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Abstract

In this paper, we study the homological algebra of the category T c of
locally convex topological vector spaces from the point of view of derived cat-
egories. We start by showing that T c is a quasi-abelian category in which
products and direct sums are exact. This allows us to derive projective and
inductive limit functors and to clarify their homological properties. In par-
ticular, we obtain strictness and acyclicity criteria. Next, we establish that
the category formed by the separated objects of T c is quasi-abelian and has
the same derived category as T c. Since complete objects of T c do not form a
quasi-abelian category, we are lead to introduce the notion of cohomological
completeness and to study the derived completion functor. Our main result
in this context is an equivalence between the subcategory of D(T c) formed
by cohomologically complete complexes and the derived category of the cat-
egory of pro-Banach spaces. We show also that, under suitable assumptions,
we can reduce the computation of Ext’s in T c to their computation in Ban
by means of derived projective limits. We conclude the paper by studying
derived duality functors.
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0 Introduction

Our aim in this paper is to study the category T c of locally convex topological

vector spaces from an homological point of view using derived categories. It is well-

known that the category T c is not abelian. Hence, we may not use the classical

techniques of homological algebra. We however prove that T c is quasi-abelian. This

allows us to construct the derived category of T c as explained in [8, 11]. In this

framework, we study the usual functors of functional analysis such as projective and

inductive limit, homomorphism, separation, completion and duality functors. A first

study of the homological algebra of these functors was done by Palamodov in [7].

Here, by working in derived categories and using the language of pro-objects, we are

able to state these results in a more natural way as well as to clarify their proves.

This approach also allows us to generalize some of the results to a non countable

situation (see e.g. Theorem 3.3.16). Since any complete space is a projective limit of

Banach spaces, it is natural to hope to reduce many homological properties of the

category T c to the corresponding properties of the category Ban of Banach spaces

by means of derived projective limit functors. For this reduction, we need both

general properties of derived projective limit functors in quasi-abelian categories

(see [9]) and more specific properties for the category of topological abelian groups

(see [10]).

In the first part of Section 1, we recall the definition of the category T c of locally

convex topological vector spaces. Using the results obtained in [10] for the category

TAb of topological abelian groups, we show that T c is quasi-abelian. After recalling

the fact that the category T c has enough injective objects but not enough projective
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objects, we end with a criterion for checking that a null-sequence of T c is costrictly

exact. In the second part, thanks to the exactness of products and direct sums in

T c, we deduce, from the general results of [9] that projective and inductive limit

functors are derivable in T c and that their derived functors are computable by Roos

complexes. Then, using results established in [10], we show that if X is a projective

system of T c indexed by a filtering ordered set, the differential dk of its Roos complex

is strict for k ≥ 1 and that d0 is strict if and only if X satisfies the condition SC

(i.e. if and only if for any i ∈ I and any absolutely convex neighborhood of zero U

in Xi, there is j ≥ i such that

xi,k(Xk) ⊂ qi(lim←−
i∈I

Xi) + U

for any k ≥ j). As a corollary, we get that a projective system of T c indexed by a

filtering ordered set is lim←−-acyclic in T c if and only if it is lim←−-acyclic in the category

of vector spaces and satisfies the condition SC. In particular, if the index set I

has a cofinal countable subset and if the spaces Xi are Fréchet, the condition SC

is necessary and sufficient for the lim←−-acyclicity of the projective system X. Note

that, in the case of Banach spaces, the condition SC corresponds to the classical

topological Mittag-Leffler condition. We conclude by proving that

RHomT c(E, F ) ' R lim←−
q∈Q

lim−→
p∈P

RHomT c(Ep, Fq)

where P and Q are the (not necessarily countable) systems of semi-norms of E and

F .

Section 2 is devoted to a cohomological study of the notion of separation. First,

we consider the full subcategory
a

T c of T c formed by separated spaces. We prove

that
a

T c is quasi-abelian and that the left derived functor of the separation functor

a

Sep : T c −→
a

T c

is an equivalence of categories. We end by establishing a few properties of the

separation and zero closure functors

Sep : T c −→ T c and Zcl : T c −→ T c

which will be useful in the next section.

We start Section 3 by considering the category T̂ c of complete spaces. Since the

quotient of a complete space by a closed subspace is not necessarily complete, this

category is not quasi-abelian. Hence, we cannot define a derived category of complete

locally convex topological vector spaces in a straightforward manner. We show that
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a way to turn this difficulty is to replace this non-existent derived category by the

full subcategory D+
cc(T c) of D+(T c) formed by cohomologically complete complexes,

i.e. the objects E· of D+(T c) such that RCpl(E·) ' E·, where Cpl : T c −→ T c is

the completion functor. Then, we prove an equivalence between the right derived

functors of the completion and separation functors. We also give necessary and

sufficient conditions, in terms of the derived functor of Zcl, for an object of T c
to be separated, complete or cohomologically complete. Next, we introduce the

functor S : T c −→ Pro(Ban) and L : Pro(Ban) −→ T c and we relate them by an

adjunction formula. After having established that the functor S is exact, we show

that the functor RCpl : D+(T c) −→ D+(T c) is canonically isomorphic to RL ◦S and

we prove that the functors RL : D+(Pro(Ban)) −→ D+
cc(T c) and S : D+

cc(T c) −→
D+(Pro(Ban)) are quasi-inverse equivalences of categories. As a corollary, we get

a formula reducing the computation of RHom in T c to that for RHom in Ban by

means of derived projective limits. In the last part of this section, after a short

study of the quasi-abelian category Fr of Fréchet spaces, we get as a corollary of

what has been obtained above that the functor RL : D+(ProN(Ban)) −→ D+(Fr) is

an equivalence of categories.

Section 4 is devoted to the study of duality functors. First, we recall some of the

properties of the standard duality functor for Banach spaces D : Ban −→ (Ban)op.

Next, we introduce the inductive dual functor Di : T c −→ T cop. We prove that Di is

left exact and we study its right derived functor. For any object X of T cIop
, where

I is a small filtering category, we obtain the formula

RDi(R lim←−
i∈I

X(i)) ' L lim−→
i∈I

(RDi(X))(i)

and we show that it is possible to compute RDi by means of the exact functor

Pro(D) : Pro(Ban) −→ (Ind(Ban))op.

As a corollary, we get that RDi(X) ' RDi(RCpl(X)) ' RDi(X̂). Finally, we show

that RDi is canonically isomorphic to the right derived functor of the strong dual

functor.

To conclude this introduction, it is a pleasure to thank J.-P. Schneiders for the

helpful discussions we had during the preparation of this paper.
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1 Homological algebra for locally convex spaces

1.1 The category T c and its derived category

Recall that a topological C-vector space E is a C-vector space endowed with a

topology having the property that both the scalar multiplication

· : C× E −→ E

and the addition

+ : E × E −→ E

are continuous. A topological C-vector space is locally convex if 0 has a basis of

absolutely convex neighborhoods. It is well known that the topology of a locally

convex vector space is always given by a system of semi-norms (i.e. a set P of semi-

norms on E such that for any p, p′ in P there is p′′ such that p′′ ≥ sup{p, p′}). This

system of semi-norms may be chosen to be the set of gauge semi-norms associated to

a basis of absolutely convex neighborhoods of 0. Conversely, if P is a system of semi-

norms on E, then the set {bp(r) : p ∈ P, r > 0} where bp(r) = {e ∈ E : p(e) < r}
forms a basis of absolutely convex neighborhoods of 0 on E.

Definition 1.1.1. We denote by T c the category whose objects are the locally

convex topological vector spaces and whose morphisms are the continuous linear

maps between locally convex topological vector spaces.

Definition 1.1.2. (i) Let E be an object of T c and let H be a subspace of E. The

locally convex topology on H associated to the system of semi-norms {p|H : p ∈ P}
where P is a system of semi-norms of E is called the induced topology. If V is a basis

of absolutely convex neighborhoods of 0 on E, then the set {V ∩H : V ∈ V} forms

a basis of absolutely convex neighborhoods of 0 on H.

(ii) Let E be an object of T c and let H be a subspace of E. For any semi-norm

p of E, we denote by p̃ the semi-norm of E/H defined by

p̃(x) = inf
e∈q−1(x)

p(e)

where q : E −→ E/H is the canonical epimorphism. The locally convex topology on

E/H associated to the system of semi-norms {p̃ : p ∈ P} where P is a system of

semi-norms of E is called the quotient topology. If V is a basis of absolutely convex

neighborhoods of 0 on E, then the set {q(V ) : V ∈ V} defines a basis of absolutely

convex neighborhoods of 0 on E/H.
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Proposition 1.1.3. Any family {Eα}α∈A of objects of T c has a product. This

product is obtained by endowing the C-vector space∏
α∈A

Eα = {(eα)α∈A : eα ∈ Eα}

with the locally convex topology associated to the family of semi-norms

{sup(p1 ◦ πα1, · · · , pN ◦ παN ) : α1, · · · , αN ∈ A, p1 ∈ Pα1 , · · · , pN ∈ PαN}

where πα :
∏

α∈AEα −→ Eα is the canonical projection and Pα is a system of semi-

norms of Eα. A basis of absolutely convex neighborhoods of 0 in
∏

α∈AEα is given

by the subsets of the form
∏

α∈AWα, where each Wα is an absolutely convex neigh-

borhood of zero in Eα, the set {α : Wα 6= Eα} being finite.

Proposition 1.1.4. Any family {Eα}α∈A of objects of T c has a direct sum. This

direct sum is obtained by endowing the C-vector space⊕
α∈A

Eα = {(eα)α∈A : eα ∈ Eα, eα 6= 0 for finitely many α}

with the locally convex topology associated to the family of semi-norms

{
∑
α∈A

cαpα ◦ πα : cα > 0, pα ∈ Pα}

where πα :
⊕

α∈AEα −→ Eα is the canonical projection and Pα is a system of semi-

norms on Eα. A basis of absolutely convex neighborhoods of 0 in
⊕

α∈AEα is given

by the subsets of the form
〈⋃

α∈A σα(Wα)
〉

where each Wα is an absolutely convex

neighborhood of zero in Eα and σα : Eα −→
⊕

α∈AEα is the canonical embedding.

Proposition 1.1.5. Let (Xi)i∈I be a family of T c. For any normed space X, we

have

HomT c(
∏
i∈I

Xi, X) '
⊕
i∈I

HomT c(Xi, X).

Proof. Work e.g. as in [6, Chap. IV, § 22, 5.(2) (p. 284)].

Remark 1.1.6. Note that the preceding result does not hold if the norm of X is

replaced by a semi-norm.

Proposition 1.1.7. The category T c is an additive category with kernels and cok-

ernels. More precisely, if f : E −→ F is a morphism of T c, then:

(i) the subspace f−1(0) of E endowed with the induced topology together with

the canonical monomorphism f−1(0) −→ E form a kernel of f ;
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(ii) the quotient space F/f(E) endowed with the quotient topology together with

the canonical epimorphism q : F −→ F/f(E) form a cokernel of f ;

(iii) the image of f is the subspace f(E) of F endowed with the induced topology;

(iv) the coimage of f is the quotient space E/f−1(0) endowed with the quotient

topology.

Corollary 1.1.8. Let f : E −→ F be a morphism of T c. The following conditions

are equivalent :

(i) f is strict,

(ii) f is relatively open (i.e. for any neighborhood of zero V in E, there is a

neighborhood of zero V ′ in F such that f(V ) ⊃ f(E) ∩ V ′),

(iii) for any semi-norm p of E, there is a semi-norm q of F and C > 0 such that

inf
e∈ker f

p(x + e) ≤ Cq(f(x)) ∀x ∈ E.

Hereafter, we will use freely the properties of the category TAb of topological

abelian groups established in [10].

Lemma 1.1.9. Denote by ψ : T c −→ TAb the canonical functor.

(i) The functor ψ is kernel and cokernel preserving.

(ii) A morphism f : E −→ F of T c is an isomorphism in T c if and only if ψ(f)

is an isomorphism in TAb.
(iii) A morphism f : E −→ F is strict in T c if and only if ψ(f) is strict in TAb.
(iv) A sequence E −→ F −→ G of T c is strictly exact in T c if and only if it’s

image by ψ is strictly exact in TAb.

Proposition 1.1.10. The category T c is quasi-abelian.

Proof. We know that T c is additive and has kernels and cokernels.

(i) Consider a cartesian square

E
f

// F

T

OO

f ′
// G

OO

where f is a strict epimorphism. Since this square is cartesian in TAb, f is a strict

epimorphism in TAb and the category TAb is quasi-abelian, it follows that f ′ is a

strict epimorphism in TAb. Therefore, f ′ is a strict epimorphism of T c.
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(ii) Using the same kind of arguments, in the cocartesian square,

G
f ′

// T

E

OO

f
// F

OO

where f is a strict monomorphism, f ′ is also a strict monomorphism.

Proposition 1.1.11. (i) Any vector space E endowed with the weakest locally

convex topology is an injective object of T c.
(ii) Let M be an arbitrary non-empty set. The Banach space l∞(M) of all

bounded maps of M into C, with the norm

‖f‖l∞(M ) = sup{|f(m)| : m ∈M}

is an injective object of T c.
(iii) For any object X of T c with P as system of semi-norms, there is a strict

monomorphism

X −→ {0}X ×
∏
p∈P

l∞(bp(1)◦)

where

{0}X =
⋂
p∈P
{x ∈ X : p(x) = 0}

is endowed with the weakest topology and bp(1)◦ denotes the polar of bp(1) in X ′.

Hence, the category T c has enough injective objects.

(iv) The category T c has not enough projective objects.

Proof. For (i), (ii), (iii), see [7]. For (iv), see [4].

Proposition 1.1.12. A sequence E −→ F −→ G is costrictly exact in T c if and only

if

(a) it is algebraically exact;

(b) the sequence

HomT c(G, l
∞(I)) −→ HomT c(F, l

∞(I)) −→ HomT c(E, l
∞(I))

is exact for any set I .
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Proof. Applying [11, Proposition 1.3.23] and using Proposition 1.1.11, we know that

the sequence E −→ F −→ G is costrictly exact in T c if and only if the sequence

HomT c(G, J) −→ HomT c(F, J) −→ HomT c(E, J)

is exact for any injective object J of T c of the form

V ×
∏
k∈K

l∞(Ik)

where V is endowed with the weakest topology. Since

HomT c(X,
∏
i∈I

Yi) '
∏
i∈I

HomT c(X, Yi)

we see that E −→ F −→ G is costrictly exact if and only if the sequences

HomT c(G, l
∞(I)) −→ HomT c(F, l

∞(I)) −→ HomT c(E, l
∞(I))

and

HomT c(G, V ) −→ HomT c(F, V ) −→ HomT c(E, V )

are exact for any set I and any vector space V . Denote V the category of C-vector

spaces. Since any object of V is injective and since

HomT c(X, V ) = HomV(X, V ),

the conclusion follows easily.

1.2 Derived limits of locally convex spaces

Proposition 1.2.1. The category T c is complete and cocomplete. More precisely,

let F : I −→ T c be a functor from a small category I to the category T c. Denote by

Ar(I) the set of morphisms of I, and, for any morphism α ∈ Ar(I), denote org(α)

(resp. ext(α)) the origin (resp. the extremity) of α.

(i) Consider the application

f :
∏

i∈Ob(I)

F (i) −→
∏

α∈Ar(I)

F (ext(α))

defined by setting

πα ◦ f = πext(α) − F (α) ◦ πorg(α) ∀α ∈ Ar(I)
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where

πα :
∏

α∈Ar(I)

F (ext(α)) −→ F (ext(α)) and πi :
∏

i∈Ob(I)

F (i) −→ F (i)

are the canonical projections. Denote

x : kerf −→
∏

i∈Ob(I)

F (i)

the canonical monomorphism. Then, ker f together with the morphisms

qi = πi ◦ x : kerf −→ F (i)

form a projective limit of F in T c. We denote it by lim←−
i∈I

F (i).

(ii) Consider the application

f :
⊕

α∈Ar(I)

F (org(α)) −→
⊕

i∈Ob(I)

F (i)

defined by setting

f ◦ σα = σorg(α) − σext(α) ◦ F (α) ∀α ∈ Ar(I)

where

σα : F (org(α)) −→
⊕

α∈Ar(I)

F (org(α)) and σi : F (i) −→
⊕

i∈Ob(I)

F (i)

are the canonical embeddings. Denote

x :
⊕

i∈Ob(I)

F (i) −→ coker f

the canonical morphism. Then, cokerf together with the morphisms

ri = x ◦ σi : F (i) −→ cokerf

form an inductive limit of F in T c. We denote it by lim−→
i∈I

F (i).

Proposition 1.2.2. Products and direct sums are exact in T c. In particular, for

any small category I, the functor

lim←−
i∈I

: T cIop −→ T c
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is right derivable and for any object X of T cIop
, we have

R lim←−
i∈I

X(i) ' R·(I, X)

where R·(I, X) is the positive Roos complex associated to X in [9]. Similarly, for

any small category I, the functor

lim−→
i∈I

: T cI −→ T c

is left derivable and for any object X of T cI , we have

L lim−→
i∈I

X(i) ' R·(I, X)

where R·(I, X) is the negative Roos complex associated to X in [9].

Proof. The exactness of products and direct sums follows at once from Proposi-

tions 1.1.3 and 1.1.4. The existence and structure of derived limits is then a conse-

quence of [9, Propositions 3.3.3 and 3.3.4].

Lemma 1.2.3. Let I be a small category. For any Banach space B and any object

X of T cIop
, we have the isomorphism

Hom (R·(I, X), B) ' R·(Iop,Hom (X,B)).

Proof. For any Banach space B and any k ≥ 0, we have

(Hom(R·(I, X), B))−k '
∏
p∈Z

HomT c(R
p(I, X), Bp−k) ' HomT c(R

k(I, X), B).

So,

(Hom (R·(I, X), B))−k ' HomT c(
∏

i0
α1−→ ···

αk−→ik

X(i0), B)

'
⊕

i0
α1−→ ···

αk−→ik

Hom (X,B)(i0)

' Rk(Iop,Hom (X,B)) ' (R·(Iop,Hom (X,B)))−k

where the second isomorphism follows from Proposition 1.1.5. The conclusion fol-

lows.
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Proposition 1.2.4. Let I be a small filtering category. Consider a Banach space

B and an object X of T cIop
such that R lim←−

i∈I
X(i) ∈ Db(T c). Then, we have the

isomorphism

RHom(R lim←−
i∈I

X(i), B) ' lim−→
i∈I

(RHom(X,B))(i).

Proof. We know that R lim←−
i∈I

X(i) ' R·(I, X). By “dévissage”, it is sufficient to prove

the result when B is an injective Banach space. In this case, we have successively

RHom (R lim←−
i∈I

X(i), B) ' Hom(R·(I, X), B)

' R·(Iop,Hom(X,B)) (*)

' L lim−→
i∈I

Hom(X,B)(i)

' lim−→
i∈I

Hom(X,B)(i) (**)

' lim−→
i∈I

(RHom (X,B))(i)

where the isomorphism (*) follows from Lemma 1.2.3. The isomorphism (**) follows

from the fact that the functor lim−→
i∈I

: AbI −→ Ab is exact.

Proposition 1.2.5. Assume I is a small filtering category such that cf(I) < ωk for

some k < ω0. Then, for any functor X : Iop −→ T c we gave

LHn(R lim←−
i∈I

E(i)) = 0 ∀n ≥ k + 1.

Similarly, for any functor

X : I −→ T c

we have

RHn(L lim−→
i∈I

X(i)) = 0 ∀n ≥ k + 1.

Proof. This follows from [9, Theorem 5.2.4].

Definition 1.2.6. Let I be a filtering ordered set. We say that a projective sys-

tem X of T cIop
satisfies condition SC if for any i ∈ I and any absolutely convex

neighborhood U of zero in Xi, there is j ≥ i such that

xi,k(Xk) ⊂ qi(lim←−
i∈I

Xi) + U ∀ k ≥ j.
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Proposition 1.2.7. Let I be a filtering ordered set and let X be an object of T cIop
.

Then :

(a) we have

LH1(R lim←−
i∈I

Xi) ∈ T c

if and only if X satisfies condition SC.

In particular, the differential d0
R·(I,X) of the Roos complex of X is strict if and

only if X satisfies condition SC.

(b) we have

LHk(R lim←−
i∈I

Xi) ∈ T c ∀k ≥ 2.

In particular, the differential dkR·(I,X) of the Roos complex of X is strict for k ≥ 1.

Proof. This follows directly from [10, Theorems 3.4 and 3.5] and from Lemma 1.1.9

Corollary 1.2.8. Let Φ : T c −→ V be the functor which associates to any object

X of T c, the vector space X. Let I be a filtering ordered set. If X is an object of

T cIop
, then the following conditions are equivalent:

(i) lim←−
i∈I

Xi ' R lim←−
i∈I

Xi,

(ii) lim←−
i∈I

Φ(Xi) ' R lim←−
i∈I

Φ(Xi) and X satisfies condition SC.

Proof. This follows from [10, Corollary 3.6].

Proposition 1.2.9. Let I be a filtering ordered set with a countable cofinal subset.

Let X be an object of T cIop
such that for any i ∈ I , Xi is a Fréchet space. Then,

X is lim←−
i∈I

-acyclic if and only if for any i ∈ I and any neighborhood of zero U in Xi,

there is j ≥ i such that

xi,j(Xj) ⊂ U + xi,k(Xk) ∀k ≥ j.

Proof. This follows from [10, Theorem 4.6].

Corollary 1.2.10. Let I be a filtering ordered set with a countable cofinal subset.

Let E be an object of T cIop
such that for any i ∈ I , Ei is a Banach space. Then, E

is lim←−
i∈I

-acyclic if and only if for any i ∈ I , there is j ≥ i such that

ei,j(Ej) = ei,k(Ek) ∀k ≥ j.
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Definition 1.2.11. Let E be an object of T c with P as system of semi-norms. For

any p ∈ P , we denote Ep the semi-normed space obtained by endowing E with the

semi-norm p.

Proposition 1.2.12. Let E be an object of T c with P as system of semi-norms.

We have the isomorphism

E ' R lim←−
p∈P

Ep

in D+(T c).

Proof. Recall that

E ' lim←−
p∈P

Ep. (*)

Moreover, if we forget the topologies, we have E = Ep and in D+(V), we have

successively

R lim←−
p∈P

Φ(Ep) ' R lim←−
p∈P

E ' E ' lim←−
p∈P

Φ(Ep),

where the second isomorphism follows from [9, Corollary 7.3.7 and Proposition 7.3.9].

Through the isomorphism (*), the canonical morphism qp : lim←−
p∈P

Ep −→ Ep becomes

the identity map E −→ Ep. Hence, it is clear that condition SC is satisfied and by

Corollary 1.2.8, we get lim←−
p∈P

Ep ' R lim←−
p∈P

Ep.

Lemma 1.2.13. Let E be an object of T c with P as system of semi-norms. For

any semi-normed space X, we have the isomorphism

HomT c(E,X) ' lim−→
p∈P

HomT c(Ep, X).

Proof. We know that for any f ∈ lim−→
p∈P

HomT c(Ep, X) there is a semi-norm p of P

and fp ∈ HomT c(Ep, X) such that f = rp(fp). Then, we define the application

u : lim−→
p∈P

HomT c(Ep, X) −→ HomT c(E,X)

by setting u(f) = fp ◦ ep where ep : E −→ Ep is the identity map. One checks easily

that this definition is meaningful and that u is bijective.

Proposition 1.2.14. Let E, F be objects of T c with P and Q as systems of semi-

norms. We have the canonical isomorphism

RHomT c(E, F ) ' R lim←−
q∈Q

lim−→
p∈P

RHomT c(Ep, Fq).
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Proof. Using Proposition 1.2.12 and [9, Proposition 3.6.3], we get successively

RHomT c(E, F ) ' RHomT c(E,R lim←−
q∈Q

Fq) ' R lim←−
q∈Q

RHomT c(E, Fq).

Let I ·q be a resolution of Fq by injective semi-normed spaces. We have

RHomT c(E, Fq) ' HomT c(E, I
·
q).

Moreover, for any k ∈ Z, we have

HomT c(E, I
k
q ) ' lim−→

p∈P
HomT c(Ep, I

k
q ).

Therefore,

RHomT c(E, Fq) ' HomT c(E, I
·
q) ' lim−→

p∈P
HomT c(Ep, I

·
q) ' lim−→

p∈P
RHomT c(Ep, Fq).

The conclusion follows.

Proposition 1.2.15. Let I be a small filtering category and let E be an object of

T cI . Then, E is lim−→
i∈I

-acyclic if and only if for any set J

Hom (E, l∞(J)) : Iop −→ Ab

is lim←−
i∈I

-acyclic.

Proof. By [9, Proposition 3.6.3], for any set J , we have

RHom (L lim−→
i∈I

E(i), l∞(J)) ' R lim←−
i∈I

(RHom(E, l∞(J)))(i).

Since l∞(J) is an injective object of T c, we obtain

Hom (L lim−→
i∈I

E(i), l∞(J)) ' R lim←−
i∈I

(Hom(E, l∞(J)))(i).

First, assume that E is lim−→
i∈I

-acyclic. For any set J , we get

R lim←−
i∈I

(Hom (E, l∞(J)))(i) ' Hom(lim−→
i∈I

E(i), l∞(J)) ' lim←−
i∈I

Hom(E, l∞(J))(i).

Hence, Hom(E, l∞(J)) is lim←−
i∈I

-acyclic.
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Conversely, assume that for any set J , Hom(E, l∞(J)) is lim←−
i∈I

-acyclic. Then, if

k 6= 0,

Hk(R lim←−
i∈I

Hom(E, l∞(J))(i)) = 0.

Moreover,

R lim←−
i∈I

Hom (E, l∞(J))(i) ' R·(I,Hom(E, l∞(J))) ' Hom (R·(Iop, E), l∞(J))

where the last isomorphism follows from [9, Lemma 3.6.2]. Therefore, if k 6= 0,

Hk(Hom(R·(Iop, E), l∞(J))) = 0,

i.e. the complex

0 −→ Hom(R0(Iop, E), l∞(J))
Hom (d1,l

∞(J))
−−−−−−−−−→ Hom(R1(Iop, E), l∞(J))

Hom (d2,l
∞(J))

−−−−−−−−−→ · · ·

is exact in degree k 6= 0.

If, for any i ∈ I, we forget the topology of E(i), then E ∈ Ob(AbI). In this

case, since the functor

lim−→
i∈I

: AbI −→ Ab

is exact,

lim−→
i∈I

E(i) ' L lim−→
i∈I

E(i) ' R·(Iop, E).

So, the complex R·(Iop, E) is algebraically exact in degree k ≥ 1. Hence, Proposi-

tion 1.1.12 shows that, for k ≥ 1, the differential

dk : Rk(Iop, E) −→ Rk−1(Iop, E)

is strict. It follows that E is lim−→
i∈I

-acyclic.

2 Separation functors

2.1 The category
a

T c

Remark 2.1.1. Let E be an object of T c with P as system of semi-norms. Recall

that E is separated if ⋂
V neighborhood

of zero

V = {0}
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or equivalently if the vanishing of p(e) for any p ∈ P implies e = 0. Recall also that

a generalized sequence (xα)α∈A of E is a family (xα)α∈A of E indexed by a filtering

ordered set A. Such a sequence converges to a limit x in E if for any ε > 0 and any

p ∈ P , there is α0 ∈ A such that

p(xα − x) ≤ ε for α ≥ α0.

Clearly, a converging sequence (xα)α∈A has a unique limit if E is separated, .

Definition 2.1.2. We denote by
a

T c the full subcategory of T c formed by separated

spaces.

We have the following well-known facts :

Proposition 2.1.3. (i) Let (Ei)i∈I be a family of
a

T c. Then, the locally convex

spaces
⊕

i∈I Ei and
∏

i∈I Ei are separated. In particular, they form the direct sum

and direct product of the family (Ei)i∈I in
a

T c.
(ii) Let E be an object of T c and let F be a vector subspace of E. Then, E/F

is separated if and only if F is closed.

Proposition 2.1.4. Let f : E −→ F be a morphism of
a

T c.

(i) The kernel of f is the subspace f−1(0) of E endowed with the induced topology.

(ii) The cokernel of f is the quotient space F/f(E) endowed with the quotient

topology.

(iii) The image of f is the subspace f(E) of F endowed with the induced topology.

(iv) The coimage of f is the quotient space E/f−1(0) endowed with the quotient

topology.

Corollary 2.1.5. Let f : E −→ F be a morphism of
a

T c. Then:

(i) f is strict in
a

T c if and only if f is strict in T c and has a closed range.

(ii) f is a strict epimorphism of
a

T c if and only if f is a strict epimorphism of T c;

(iii) f is a strict monomorphism of
a

T c if and only if f is a strict monomorphism

of T c and has a closed range.

Lemma 2.1.6. A sequence

0 −→ E
f−→ F

g−→ G −→ 0

of
a

T c is strictly exact if and only if it is strictly exact in T c.
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Proof. (a) Assume that the sequence is strictly exact in
a

T c. We know that (E, f)

is a kernel of g in T c. Moreover, we have G ' coker f ' F/f(E). Since f is strict

in
a

T c, f(E) is closed and G ' F/f(E). It follows that (G, g) is a cokernel of f in

T c.
(b) Conversely, assume that the sequence is strictly exact in T c. On one hand,

(E, f) is a kernel of g in
a

T c. On the other hand, in T c, we have

f(E) ' im(f) ' ker(g) ' g−1(0).

Since G is separated, g−1(0) is closed. Hence, f(E) is closed. Therefore, (G, g) is a

cokernel of f in
a

T c.

Lemma 2.1.7. Let f : E −→ F and g : F −→ G be two morphisms of
a

T c. If g ◦ f is

a strict monomorphism of
a

T c, then f is a strict monomorphism of
a

T c.

Proof. By Corollary 2.1.5, g ◦ f is a strict monomorphism of T c. Then, we know

that f is a strict monomorphism of T c. So, we only have to prove that f has a

closed range. Consider y ∈ f(E). There is a generalized sequence (xα)α∈A of E such

that

(f(xα))α∈A −→ y

in F . It follows that

((g ◦ f)(xα))α∈A −→ g(y)

in G and that g(y) ∈ (g ◦ f)(E). Since g ◦ f is strict in
a

T c, g ◦ f has a closed range.

Hence, there is x ∈ E such that g(y) = (g ◦ f)(x). Therefore,

((g ◦ f)(xα))α∈A −→ (g ◦ f)(x) in G.

Since g ◦f is a strict monomorphism, g ◦f : E −→ g ◦f(E) is an isomorphism. Then,

(xα)α∈A −→ x in E. Since f is continuous, (f(xα))α∈A −→ f(x) in F and since F is

separated, y = f(x). Thus, we have obtained f(E) ⊂ f(E). The other inclusion

being obvious, the conclusion follows.

Proposition 2.1.8. The category
a

T c is quasi-abelian.

Proof. We know that
a

T c is additive and that any morphism of
a

T c has a kernel and

a cokernel.

Consider the cartesian square

E
f

// F

T

v

OO

u
// G

g

OO
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of
a

T c where f is a strict epimorphism. By Corollary 2.1.5, f is a strict epimorphism

of T c. It follows that u is a strict epimorphism of T c and hence of
a

T c.
Finally, consider the cocartesian square

G
u

// T

E

g

OO

f
// F

v

OO
(*)

of
a

T c where f is a strict monomorphism. Since

(
0 −1

)
◦
(
g

−f

)
= f,

Lemma 2.1.7 shows that

(
g

−f

)
: E −→ G⊕ F is a strict monomorphism of

a

T c. The

square (*) being cocartesian, the sequence

0 // E

0
@ g

−f

1
A

// G⊕ F
�
u v

�
// T // 0 (**)

is strictly exact in
a

T c and hence in T c (see Lemma 2.1.6). It follows that the square

(*) is cocartesian in T c and that u is a strict monomorphism of T c. To conclude,

let us prove that u has a closed range. The morphisms g and v induce a strict

quasi-isomorphism between the complexes

0 −→ E
f−→ F −→ 0 and 0 −→ G

u−→ T −→ 0

since the mapping cone of

0 // E
f

//

g

��

F //

v

��

0

0 // G u
// T // 0

is the strictly exact complex (**). Taking the cohomology and using the fact that

f and u are strict monomorphisms, we get coker(f) ' coker(u) in T c. Since f(E)

is closed, coker(f) = F/f(E) is separated. It follows that coker(u) = T/u(G) is

separated and u(G) is closed.
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2.2 Equivalence between D(T c) and D(
a

T c)

Definition 2.2.1. We denote by

a

I :
a

T c −→ T c

the inclusion functor and we define the functor

a

Sep : T c −→
a

T c

by setting
a

Sep(E) = E/{0}E

and endowing it with the quotient topology.

Proposition 2.2.2. For any object E of T c and any object F of
a

T c, we have the

isomorphism

Hom a

T c(
a

Sep(E), F ) ' HomT c(E,
a

I(F )).

Proof. This well-known isomorphism follows from the fact that if f : E −→ F is

continuous and F separated, then f−1(0) is a closed subset of E containing 0 and

hence {0}E .

Lemma 2.2.3. Denote by C− the space C endowed with the weakest topology.

Then, there is a strictly exact sequence in T c of the form

0 −→ S1 −→ S0 −→ C− −→ 0

where S0 and S1 are separated.

Proof. Consider the subspace S0 of c0 formed by sequences (xn)n∈N such that nxn
is constant for n >> 0 and the subspace S1 of S0 formed by sequences (xn)n∈N null

for n >> 0. Since c0 is a normed space, so are S0 and S1.

(a) Let us show that S1 is dense in c0. Consider x = (xn)n∈N ∈ c0 and ε > 0.

There is n0 ∈ N such that |xn| < ε for n > n0. Define y = (yn)n∈N ∈ S1 by setting

yn =

{
xn if n ≤ n0

0 if n > n0

Since ‖y − x‖c0 = supn>n0
|xn| ≤ ε, S1 is dense in c0.

(b) It follows from (a) that S1 is dense in S0. Hence, the quotient topology on

S0/S1 is the weakest one. Let us show that S0/S1 ' C as C-vector spaces. Remark

that the sequence (1/n)n∈N belongs to S0 \ S1. Consider a sequence x = (xn)n∈N



Derived Categories for Functional Analysis 21

of S0. There is n0 ∈ N and c ∈ C such that nxn = c for n ≥ n0. It follows that

xn = c/n for n ≥ n0. If y is the sequence of S1 defined by

yn =

{
xn − c/n if n < n0

0 if n ≥ n0

then, x = c(1/n)n∈N+ y. Therefore, the class of (1/n)n∈N in S0/S1 forms a basis of

this vector space.

(c) By (b), S0/S1 is isomorphic to C−. The sequence

0 −→ S1 −→ S0 −→ S0/S1 −→ 0

being clearly strictly exact, the conclusion follows.

Proposition 2.2.4. For any object E of T c, there is a strictly exact sequence in

T c of the form

0 −→ S1 −→ S0 −→ E −→ 0

where S0 and S1 are separated.

Proof. We know that E ' E/N ⊕ N where N is the closure of zero in E. Since in

this formula N is endowed with the weakest topology, we have N '
⊕

b∈B C− where

B denotes a basis of N as a C-vector space. By Lemma 2.2.3, there is a strictly

exact sequence in T c
0 −→ S ′1 −→ S ′0 −→ C− −→ 0

where S ′0 and S ′1 are separated. Since the sequence

0 −→ 0 −→ E/N
id−→ E/N −→ 0

is strictly exact and since direct sums are exact in T c, the conclusion follows easily.

Lemma 2.2.5. The category
a

T c is
a

Sep-projective.

Proof. This follows directly from Proposition 2.2.4 and Lemma 2.1.6.

Proposition 2.2.6. (1) The functor
a

I :
a

T c −→ T c is kernel preserving and exact.

(2) The functor
a

Sep : T c −→
a

T c is cokernel preserving but not exact and it gives

rise to a left derived functor

L
a

Sep : D(T c) −→ D(
a

T c).

(3) The functor L
a

Sep : D(T c) −→ D(
a

T c) is a quasi-inverse of
a

I : D(
a

T c) −→
D(T c). In particular,

D(T c) ≈ D(
a

T c).
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Proof. (1) Since the kernel of a morphism of
a

T c is the kernel of this morphism in

T c, the functor
a

I is kernel preserving. Moreover, by Lemma 2.1.6,
a

I is exact.

(2) By the adjunction formula of Proposition 2.2.2,
a

Sep is cokernel preserving.

It is not exact. As a matter of fact, let E be a non closed subspace of the separated

space F . The inclusion morphism i : E −→ F is a strict monomorphism of T c. But

i =
a

Sep(i) : E −→ F is not a strict monomorphism of
a

T c since i has not a closed

range. By Lemma 2.2.5,
a

Sep is left derivable.

(3) On one hand, for any object S of D(
a

T c), we have

L
a

Sep ◦
a

I(S) = L
a

Sep(
a

I(S)) =
a

Sep(
a

I(S)) = S

where the second equality follows from the fact that the components of the complex
a

I(S) are separated. On the other hand, any object E of D(T c) is quasi-isomorphic

to a complex S with separated components. Therefore, we have

L
a

Sep(E) =
a

Sep(S) and
a

I ◦ L
a

Sep(E) '
a

I ◦
a

Sep(S) ' S ' E.

2.3 The functors Zcl and Sep

Definition 2.3.1. We define the functors

Zcl : T c −→ T c and Sep : T c −→ T c

by setting

Zcl(E) = {0}E and Sep(E) = E/Zcl(E)

where {0}E is endowed with the weakest topology. Of course, we have

Sep =
a

I ◦
a

Sep.

Proposition 2.3.2. The functor Sep : T c −→ T c has a left derived functor

LSep : D−(T c) −→ D−(T c)

which is equivalent to the identity functor.

Proof. Since
a

I is exact, one has LSep =
a

I ◦ L
a

Sep and the conclusion follows from

Proposition 2.2.6.

Proposition 2.3.3. For any object E of T c, we have a distinguished triangle

RZcl(E) −→ E −→ RSep(E)
+1−→ .
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Proof. This follows directly from the fact that T c has enough injective objects and

that for any object E of T c, the sequence

0 −→ Zcl(E) −→ E −→ Sep(E) −→ 0

is strictly exact.

Proposition 2.3.4. Denote

(·)− : V −→ T c
the functor which associates to any vector space V the object of T c obtained by

endowing V with the weakest topology. Then, for any object E of T c, we have

Zcl(E) ' (Hom (C−, E))−.

In particular, Zcl : T c −→ T c is a kernel preserving functor and, for any object E of

T c, we have the isomorphism

RZcl(E) ' (RHom (C−, E))−.

Proof. Let E be an object of T c. The first part follows from the fact if f : C− −→ E

is a morphism of T c, then f−1({0}E) ⊃ {0}C
−

= C− and

HomT c(C
−, E) ' HomV(C,Zcl(E)) ' Zcl(E).

As for the second part, it follows from the fact that the functor HomT c(C−, ·) :

T c −→ V is kernel preserving and that the functor (·)− : V −→ T c is exact.

Proposition 2.3.5. For any family (Ei)i∈I of T c, we have

Zcl(
∏
i∈I

Ei) '
∏
i∈I

Zcl(Ei) and Sep(
∏
i∈I

Ei) '
∏
i∈I

Sep(Ei).

Proof. By definition of the functor Zcl, we clearly have

Zcl(
∏
i∈I

Ei) '
∏
i∈I

Zcl(Ei)

of T c. Then, using the strictly exact sequences

0 −→ Zcl(Ei) −→ Ei −→ Sep(Ei) −→ 0

we deduce easily from the first part that

Sep(
∏
i∈I

Ei) '
∏
i∈I

Sep(Ei).
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3 Completion functors

3.1 The category T̂ c

Definition 3.1.1. Let E be an object of T c with P as system of semi-norms. A

generalized sequence (xα)α∈A of E is a Cauchy sequence if for any ε > 0 and any

p ∈ P , there is α0 ∈ A such that

p(xα − xα′) ≤ ε for α, α′ ≥ α0.

An object E of T c is complete if it is separated and if any Cauchy sequence of

E converges in E.

We denote by T̂ c the full subcategory of T c formed by complete spaces.

Remark 3.1.2. Recall that to any object E of T c is associated a complete object Ê

and a canonical morphism iE : E −→ Ê characterized by the fact that any morphism

f : E −→ F with F complete may be uniquely factored through iE. Moreover, iE is

a strict morphism whose image is dense in Ê and whose kernel is the closure of zero

in E.

As is well-known [3, TG II, § 3, no 7], the completion of an object of T c may

also be characterized as follows :

Proposition 3.1.3. Let j : E −→ F be a morphism of T c. If F is complete,

j−1(0) = {0}E , j is strict and j(E) is dense in F , then for any morphism g : E −→ G

with G complete, there is a unique morphism f : F −→ G making the diagram

E
j

//

g
��
@
@
@
@
@
@
@
@

F

f
��

G

commutative.

Definition 3.1.4. We denote by

Î : T̂ c −→ T c

the inclusion functor and we define the functor

Ĉpl : T c −→ T̂ c

by setting Ĉpl(E) = Ê where Ê is the complete separated space associated to E.

It follows from the definition of the completion of an object of T c that:
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Proposition 3.1.5. For any object E of T c and any object F of T̂ c, we have the

isomorphism

Hom bT c(Ĉpl(E), F ) ' HomT c(E, Î(F )).

For any object F of T̂ c, the canonical morphism Ĉpl ◦ Î(F ) −→ F is an isomorphism

and for any object E of T c, the canonical morphism iE : E −→ Î ◦ Ĉpl(E) is strict

in T c. Moreover, its image is dense and its kernel is the closure of zero in E. In

particular, if E is separated, iE is a strict monomorphism.

Proposition 3.1.6. (a) Any closed subspace of an object of T̂ c is complete.

(b) If E is an object of T̂ c and if F is a closed subspace of E, then the quotient

space E/F is not necessarily complete. (However, E/F is a Fréchet space if E is a

Fréchet space).

(c) If (Ei)i∈I is a family of T̂ c, then the locally convex spaces
⊕

i∈I Ei and∏
i∈I Ei are complete. In particular, they form the direct sum and direct product of

the family (Ei)i∈I in T̂ c.

Proof. (a) is clear.

(b) See for example [5, Problem 20D].

(c) See for example [6, Chap. I, § 5, 7.(2) (p. 37) and Chap. IV, § 18, 5.(3) (p.

212)].

Proposition 3.1.7. If (Ei)i∈I is a family of T̂ c, we have

Î(
⊕
i∈I

Ei) '
⊕
i∈I

Î(Ei), Î(
∏
i∈I

Ei) '
∏
i∈I

Î(Ei)

and if (Ei)i∈I is a family of T c, we have

Ĉpl(
⊕
i∈I

Ei) '
⊕
i∈I

Ĉpl(Ei), Ĉpl(
∏
i∈I

Ei) '
∏
i∈I

Ĉpl(Ei).

Proof. This follows from Proposition 3.1.6 thanks to Proposition 3.1.3.

Proposition 3.1.8. Let f : E −→ F be a morphism of T̂ c.

(i) The kernel of f is the subspace f−1(0) of E endowed with the induced topology.

(ii) The cokernel of f is the space F̂/f(E) where F/f(E) is endowed with the

quotient topology.

(iii) The image of f is the subspace f(E) of F endowed with the induced topology.

(iv) The coimage of f is the space ̂E/f−1(0) where E/f−1(0) is endowed with the

quotient topology.
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Proposition 3.1.9. Let f : E −→ F be a morphism of T̂ c. Then, f is strict in T̂ c
if and only if f is strict in T c.

Proof. First, assume that f is strict in T̂ c. Hence, the canonical morphism

ϕ : ̂E/f−1(0) −→ f(E)

is an isomorphism. Consider the commutative diagram of T c

̂E/f−1(0)
ϕ

// f(E)

E/f−1(0)

i

OO

ψ
// f(E)

j

OO

where i and ψ are the canonical morphisms and j the inclusion morphism. Since E is

separated and f−1(0) is closed, E/f−1(0) is separated. Then, by Proposition 3.1.5, i

is a strict monomorphism of T c. Therefore, j ◦ψ = ϕ◦ i is a strict monomorphism of

T c. It follows that ψ is a strict monomorphism. Since ψ is clearly an epimorphism,

ψ is an isomorphism of T c. Hence, f is strict in T c.
Conversely, assume that f is strict in T c, i.e. ψ is an isomorphism. Since f(E)

and f(E) are endowed with the topology induced by that of F , j is a strict monomor-

phism. It follows that j ◦ψ is a strict monomorphism. Moreover, the image of j ◦ψ
is dense and since f(E) is a closed subspace of the complete space F , f(E) is also

complete. Then, by Proposition 3.1.3, there is a unique morphism

ϕ′ : f(E) −→ ̂E/f−1(0)

making the diagram

E/f−1(0)
j◦ψ

//

i
&&
M
M
M
M
M
M
M
M
M

f(E)

ϕ′

��

̂E/f−1(0)

commutative. One checks easily that ϕ and ϕ′ are inverse one of each other. The

conclusion follows.

Proposition 3.1.10. Let f : E −→ F be a morphism of T̂ c. Then,

(i) f is a monomorphism (resp. strict monomorphism) of T̂ c if and only if f is a

monomorphism (resp. strict monomorphism) of T c;

(ii) f is an epimorphism (resp. strict epimorphism) of T̂ c if and only if f(E) is

dense in F (resp. f(E) is dense in F and f is strict in T c).
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Proof. This follows directly from Proposition 3.1.8 and Proposition 3.1.9.

Remark 3.1.11. (i) If f : E −→ F is a strict monomorphism of T̂ c, then f(E) is

closed. As a matter of fact, if f is a strict monomorphism, the canonical morphism

f : E −→ f(E) is an isomorphism. In particular, f(E) = f(E).

(ii) If f : E −→ F is a strict epimorphism of T̂ c, then f is not necessarily an

epimorphism of T c. As a matter of fact, let E be an object of T̂ c and N a closed

subspace of E such that E/N is not complete. Set F = Ê/N . If q : E −→ E/N and

i : E/N −→ Ê/N are the canonical morphisms, set f = i ◦ q : E −→ F . Since f(E)

is dense in F , by Proposition 3.1.10, f is an epimorphism of T̂ c. Hence,

im(f) = F in T̂ c. (*)

The subspace N being closed, E/N is separated and by Proposition 3.1.5, i is

injective. It follows that

f−1(0) = (i ◦ q)−1(0) = q−1(i−1(0)) = q−1(0) = N

and that

coim(f) ' Ê/N ' F in T̂ c. (**)

By (*) and (**), f is strict in T̂ c. But, since E/N is not complete, f(E) 6= F . So,

f is not an epimorphism of T c.

Proposition 3.1.12. If u : E −→ F is a strict monomorphism of T c, then, û : Ê −→
F̂ is a strict monomorphism of T c and, hence, of T̂ c.

Proof. See e.g. [3, TG II, p. 26, cor. 1]

Proposition 3.1.13. The functor Î : T̂ c −→ T c is kernel preserving, but not ex-

act. The functor Ĉpl : T c −→ T̂ c is cokernel preserving and exact, but not kernel

preserving.

Proof. The fact that Î (resp. Ĉpl) is kernel (resp. cokernel) preserving follows from

the adjunction formula between Î and Ĉpl.

Let us show that Î is not exact. If E is an object of T̂ c and F a closed subspace

of E such that E/F is not complete, the sequence

0 −→ F −→ E −→ Ê/F −→ 0

is strictly exact in T̂ c but not in T c (see Remark 3.1.11).



28 Fabienne Prosmans

Now, let us prove that Ĉpl is exact. Consider a strictly exact sequence

0 −→ E
u−→ F

v−→ G −→ 0

of T c. Since u : E −→ F is a strict monomorphism of T c, by Proposition 3.1.12,

û : Ê −→ F̂ is a strict monomorphism. It follows that û is the kernel of its cokernel.

Moreover, since Ĉpl is cokernel preserving, v̂ is the cokernel of û. Therefore, the

sequence

0 −→ Ê
bu−→ F̂

bv−→ Ĝ −→ 0

is strictly exact in T̂ c.
Finally, let us show that Ĉpl is not kernel preserving. Consider a vector space

V 6= 0 and denote by V + (resp. V −) the object V of T c endowed with the strongest

(resp. weakest) locally convex topology. Then, the identity map ϕ : V + −→ V −

is continuous and we have ker(ϕ) = 0. Since V̂ − = 0, we have ker(ϕ̂) = V̂ +.

Moreover, since V + is separated, by Proposition 3.1.5, iV + : V + −→ V̂ + is injective

and iV +(V +) 6= 0. It follows that

ker(ϕ̂) = V̂ + ⊃ iV +(V +) 6= 0,

and Ĉpl is not kernel preserving.

Proposition 3.1.14. The category T̂ c is not quasi-abelian.

Proof. Let F be a closed subspace of an object E of T̂ c such that E/F is not

complete. Set G = Ê/F . If q : E −→ E/F and i : E/F −→ Ê/F are the canonical

morphisms, set f = i ◦ q : E −→ G. By Remark 3.1.11, f is a strict epimorphism of

T̂ c and f(E) 6= G. Fix x ∈ G \ f(E). Consider the continuous linear application

m : C −→ G defined by m(c) = cx for c ∈ C. Let us show that the commutative

square

E
f

// G

F
0

//

OO

C

m

OO
(*)

is cartesian in T̂ c. Consider e ∈ E and c ∈ C such that

(
f −m

)(e
c

)
= f(e)−m(c) = 0.
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Hence, f(e) = cx. If c 6= 0, then x = f(e/c). Since x ∈ G \ f(E), we get a

contradiction. It follows that c = 0 and f(e) = 0. Since by Remark 3.1.11, f−1(0) =

F we get e ∈ F . Therefore, we have successively(
f −m

)−1
(0) = {(e, c) : e ∈ F, c = 0} ' F

and the square (*) is cartesian. Since {0} is not dense in C, by Proposition 3.1.10,

0 : F −→ C is not a strict epimorphism of T̂ c. Hence, the conclusion.

3.2 The functor Cpl and cohomological completeness

Definition 3.2.1. We define the functor

Cpl : T c −→ T c

by setting

Cpl = Î ◦ Ĉpl.

Proposition 3.2.2. The functor Cpl is left exact and has a right derived functor

RCpl : D+(T c) −→ D+(T c).

Proof. By Proposition 3.1.13, the functor Î is kernel preserving and the functor Ĉpl

is exact. Then, the functor Cpl = Î◦ Ĉpl is left exact. Since T c has enough injective

objects, Cpl is right derivable.

Definition 3.2.3. An object E· of D+(T c) is cohomologically complete if

RCpl(E·) ' E·

in D+(T c). We denote by D+
cc(T c) the full subcategory of D+(T c) formed by coho-

mologically complete complexes.

Proposition 3.2.4. The category D+
cc(T c) is a triangulated subcategory of the de-

rived category D+(T c).

Proof. Consider a distinguished triangle E ′ −→ E −→ E ′′
+1−→ of D+(T c) such that

E′ and E are cohomologically complete. Since the functor RCpl is triangulated, the

triangle

RCpl(E′) −→ RCpl(E) −→ RCpl(E′′)
+1−→

is distinguished in D+(T c). Moreover, we have the morphism of distinguished tri-

angles

E ′ //

��

E //

��

E ′′
+1

//

��

RCpl(E ′) // RCpl(E) // RCpl(E ′′)
+1

//



30 Fabienne Prosmans

The complexes E and E ′ being cohomologically complete, we have

RCpl(E) ' E and RCpl(E′) ' E ′.

It follows that RCpl(E ′′) ' E ′′ and that E ′′ is cohomologically complete. The

conclusion follows easily.

Proposition 3.2.5. For any object E· of D+(T c), the object RCpl(E·) is cohomo-

logically complete. In particular, RCpl induces a functor

RCpl : D+(T c) −→ D+
cc(T c)

which is a left quasi-inverse of the inclusion functor

D+
cc(T c) −→ D+(T c).

Proof. We know that E· is quasi-isomorphic to a complex I · such that each Ik is of

the type

Vk ×
∏
jk∈Jk

Fjk

where Vk is a vector space endowed with the weakest topology and Fjk is an injective

Banach space. Since Cpl(Ik) '
∏

jk∈Jk Fjk , Cpl(Ik) is an injective object of T c which

is complete. Therefore,

RCpl(RCpl(E)) ' RCpl(Cpl(I ·)) ' Cpl(Cpl(I ·)) ' Cpl(I ·) ' RCpl(E).

Hence, the conclusion.

Proposition 3.2.6. The product of cohomologically complete spaces is a cohomo-

logically complete space.

Proof. Let (Ej)j∈J be a family of cohomologically complete spaces. For any j ∈ J ,

let I ·j be an injective resolution of Ej in T c. Since products are exact in T c and

since the product of injective objects is an injective object,
∏

j∈J I
·
j is an injective

resolution of
∏

j∈J Ej . It follows that

RCpl(
∏
j∈J

Ej) ' Cpl(
∏
j∈J

I ·j) '
∏
j∈J

Cpl(I ·j) '
∏
j∈J

RCpl(Ej) '
∏
j∈J

Ej

where the second isomorphism follows from Proposition 3.1.7.

Proposition 3.2.7. If E is a cohomologically complete object of T c, then E is

complete.
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Proof. Since E ' RCpl(E) and since Cpl is left exact, we have

E ' LH0(E) ' LH0(RCpl(E)) ' Cpl(E).

Remark 3.2.8. Complete objects of T c are not always cohomologically complete.

For example consider a complete space E and a closed subspace F of E such that

the quotient space E/F is not complete. Then, the sequence

0 −→ F −→ E −→ E/F −→ 0

is strictly exact and gives rise to the distinguished triangle

F −→ E −→ E/F
+1−→

Assume that E and F are cohomologically complete. By Proposition 3.2.4, E/F is

cohomologically complete and then complete. Hence, a contradiction.

Proposition 3.2.9. For any object E of T c, we have a canonical isomorphism

RSep(E) ' RCpl(E).

In particular,

LH0(RSep(E)) ' Cpl(E).

Proof. Let E be an object of T c and let I · be an injective resolution of E. For any

n, we may assume that

In = V n ×
∏
jn∈Jn

Bjn

where V n is an object of T c with the weakest topology and Bjn is an injective

Banach space for any jn ∈ Jn. Then, we have successively

Cpl(In) ' Cpl(V n)×
∏
jn∈Jn

Cpl(Bjn) '
∏
jn∈Jn

Bjn

and

Sep(In) ' Sep(V n)×
∏
jn∈Jn

Sep(Bjn) '
∏
jn∈Jn

Bjn .

It follows that

RCpl(E) ' Cpl(I ·) ' Sep(I ·) ' RSep(E).
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Proposition 3.2.10. Let E be an object of T c.

(i) E is separated ⇐⇒ Zcl(E) ' 0.

(ii) E is complete ⇐⇒ Zcl(E) ' 0 and LH1(RZcl(E)) ' 0.

(iii) E is cohomologically complete ⇐⇒ RZcl(E) ' 0.

Proof. (i) is clear.

(ii) By Proposition 2.3.3 and Proposition 3.2.9, we have the distinguished triangle

RZcl(E) −→ E −→ RCpl(E)
+1−→ (*)

Since the functors Zcl and Cpl are left exact, we have the long exact sequence

0 // Zcl(E) // E // Cpl(E) EDBC
GF@A

// LH1(RZcl(E)) // 0 // · · ·

So, Cpl(E) ' E if and only if Zcl(E) ' 0 and LH1(RZcl(E)) ' 0. The conclusion

follows.

(iii) By definition, E is cohomologically complete if and only if E ' RCpl(E).

Since the triangle (*) is distinguished, E is cohomologically complete if and only if

RZcl(E) ' 0.

Corollary 3.2.11. Let E be an object of T c. Then,

(i) E is separated ⇐⇒ Hom (C−, E) ' 0.

(ii) E is complete ⇐⇒ Hom(C−, E) ' 0 and Ext1(C−, E) ' 0.

(iii) E is cohomologically complete ⇐⇒ RHom (C−, E) ' 0.

Proof. (i) follows from Proposition 3.2.10 and Proposition 2.3.4.

(ii) By Proposition 3.2.10, E is complete if and only if

Zcl(E) ' 0 and LH1(RZcl(E)) ' 0.

We have Zcl(E) ' (Hom(C−, E))− and

LH1(RZcl(E)) '
[
H1(RHom(C−, E))

]− ' Ext1(C−, E)−

where the first isomorphism follows from the fact that any morphism between objects

of T c with the weakest topology is strict. Hence, the conclusion.

(iii) follows from Proposition 3.2.10.
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3.3 Equivalence between D+
cc(T c) and D+(Pro(Ban))

Definition 3.3.1. The category of Banach spaces is the full subcategory of T c
whose objects are the Banach spaces. We denote it by Ban.

One can show that the category Ban is a quasi-abelian category with enough

injective objects. Moreover, the space l1(I) of summable sequences of C indexed by

I is projective and Ban has enough projective objects. For more details, see [8].

Hereafter, we will use freely the language of pro-objects. We refer the reader

for example to [1, 2] (or to [9] for the main results in the context of quasi-abelian

categories). In particular, we have:

Proposition 3.3.2. The category Pro(Ban) is a complete quasi-abelian category

with exact filtering projective limits.

Proposition 3.3.3. A sequence

E
u−→ F

v−→ G

of Pro(Ban) is costrictly exact if and only if the sequence

HomPro(Ban)(G, “l
∞(I)”) −→ HomPro(Ban)(F, “l

∞(I)”) −→ HomPro(Ban)(E, “l
∞(I)”)

is exact for any set I

Proof. Work as in Proposition 1.1.12.

Proposition 3.3.4. For any object E of T c, the functor

S′(E) : Ban −→ Ab

defined by setting

S′(E)(X) = HomT c(E,X)

is pro-represented by “lim←−”
p∈P

Êp, where P is the system of semi-norms of E.

Proof. Let E be an object of T c with P as system of semi-norms. For any Banach

space X, we get successively

S′(E)(X) ' HomT c(E,X) ' lim−→
p∈P

HomT c(Ep, X)

' lim−→
p∈P

HomBan(Êp, X) ' HomPro(Ban)(“lim←−”
p∈P

Êp, “X”)

where the second isomorphism follows from Lemma 1.2.13.
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Definition 3.3.5. Let

S : T c −→ Pro(Ban)

be the functor characterized by the isomorphism

HomPro(Ban)(S(E), “X”) ' HomT c(E,X)

where X is in Ban and E in T c.

Remark 3.3.6. For any object E of T c with P as system of semi-norms, we have

S(E) ' “lim←−”
p∈P

Êp.

In particular, if E is a semi-normed space, then

S(E) ' “Ê”.

Proposition 3.3.7. For any object E of T c, we have

S(E) ' S(Ê).

Proof. Let E be an object of T c with P as system of semi-norms. For any Banach

space X, we have successively

HomPro(Ban)(S(E), “X”) ' HomT c(E,X) ' HomT c(Ê, X)

' HomPro(Ban)(S(Ê), “X”).

Proposition 3.3.8. If (Ei)i∈I is a small family of T c, then

S(
∏
i∈I

Ei) '
∏
i∈I

S(Ei).

Proof. For any Banach space X, we have

HomPro(Ban)(S(
∏
i∈I

Ei), “X”) ' HomT c(
∏
i∈I

Ei, X) '
⊕
i∈I

HomT c(Ei, X)

'
⊕
i∈I

HomPro(Ban)(S(Ei), “X”)

' HomPro(Ban)(
∏
i∈I

S(Ei), “X”)

where the second isomorphism follows from Proposition 1.1.5.
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Proposition 3.3.9. If

X −→ Y −→ Z

is a costrictly exact sequence of T c, then the sequence

S(X) −→ S(Y ) −→ S(Z)

is costrictly exact in Pro(Ban). In particular, the functor S is exact and cokernel

preserving.

Proof. LetX −→ Y −→ Z be a costrictly exact sequence of T c. By Proposition 1.1.12,

the sequence

HomT c(Z, l
∞(I)) −→ HomT c(Y, l

∞(I)) −→ HomT c(X, l
∞(I))

is exact. Since for any object X of T c,

HomT c(X, l
∞(I)) ' HomPro(Ban)(S(X), “l∞(I)”),

the conclusion follows from Proposition 3.3.3.

Definition 3.3.10. Let

L : Pro(Ban) −→ T c
be the composite functor

Pro(Ban)
Pro(I)−−−→ Pro(T c) LT c−−→ T c

where I : Ban −→ T c is the canonical embedding. In other words, for any functor

X : Iop −→ Ban, we set

L(“lim←−”
i∈I

X(i)) = lim←−
i∈I

X(i)

where the projective limit is taken in T c.
Proposition 3.3.11. For any object E of T c and any object X of Pro(Ban), we

have the adjunction formula:

HomT c(E,L(X)) ' HomPro(Ban)(S(E), X).

In particular, L preserves projective limits and S preserves inductive limits.

Proof. Let E be an object of T c and let X : Iop −→ Ban be an object of Pro(Ban).

Then, we get successively

HomT c(E,L(X)) ' lim←−
i∈I

HomT c(E,X(i)) ' lim←−
i∈I

HomPro(Ban)(S(E), “X(i)”)

' HomPro(Ban)(S(E), X).
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Lemma 3.3.12. For any object E of T c with P as system of semi-norms, we have

L(S(E)) ' lim←−
p∈P

Êp ' Ê.

Proof. The first isomorphism follows from the definitions. As for the second one,

we refer to [6, Chap. IV, § 19, 9.(1) (p. 231)].

Proposition 3.3.13. The functor

RCpl : D+(T c) −→ D+(T c)

is canonically isomorphic to

RL ◦S .

Proof. By Lemma 3.3.12, Cpl = L ◦S and by Proposition 3.3.9, the functor S is

exact, so we have to prove that

R(L ◦S) = RL◦RS .

The objects of an injective resolution in T c may be assumed to be of the form

E ×
∏

i∈I Fi, where E is an object of T c with the weakest topology and Fi is an

injective Banach space for any i ∈ I . We have

S(E ×
∏
i∈I

Fi) ' S(E) ×
∏
i∈I

S(Fi) '
∏
i∈I

“Fi”.

Since by [9, Proposition 7.3.9],
∏

i∈I “Fi” is L-acyclic, S(E×
∏
i∈I Fi) is also L-acyclic

and the conclusion follows.

Corollary 3.3.14. For any object E of T c, we have

RCpl(E) ' RCpl(Sep(E)) ' RCpl(Cpl(E)).

Proof. This follows from Proposition 3.3.13 and Proposition 3.3.7 keeping in mind

that Cpl(E) ' Cpl(Sep(E)).

Corollary 3.3.15. Let E be an object of T c with P as system of semi-norms.

Then, the following conditions are equivalent.

(i) E is cohomologically complete;

(ii) RL ◦S(E) ' E;

(iii) R lim←−
p∈P

Êp ' E.
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Proof. The equivalence between (i) and (ii) follows from Proposition 3.3.13.

The fact that (ii) is equivalent to (iii) follows from the isomorphisms

RL ◦ S(E) ' RL(“lim←−”
p∈P

Êp) ' R lim←−
p∈P

Êp.

Theorem 3.3.16. The functor

RL : D+(Pro(Ban)) −→ D+
cc(T c)

is an equivalence of categories.

Proof. The functor S : T c −→ Pro(Ban) being exact, it gives rise to a functor

S : D+
cc(T c) −→ D+(Pro(Ban)).

First, by Corollary 3.3.15, for any object E · of D+
cc(T c), we have

RL ◦S(E·) ' E·.

Next, consider a complex X ·

0 −→ X−k −→ X−k+1 −→ · · ·

of D+(Pro(Ban)). We know that X · has an injective resolution by objects of the

type
∏

i∈I “Ii” where each Ii is an injective object of Ban. Since we have

S(L(
∏
i∈I

“Ii”)) ' S(
∏
i∈I

Ii) '
∏
i∈I

“Ii”

we get S ◦RL(X ·) ' X · in D+(Pro(Ban)). Therefore, for any X · ∈ D+(Pro(Ban)),

we have

(RL◦ S)(RL(X ·)) ' RL(S ◦RL(X ·)) ' RL(X ·)

and RL(X ·) ∈ D+
cc(T c). The conclusion follows.

Corollary 3.3.17. Let E and F be two objects of T c and let P and Q be their

respective systems of semi-norms. If F is cohomologically complete, then

RHomT c(E, F ) ' R lim←−
q∈Q

lim−→
p∈P

RHomBan(Êp, F̂q).
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Proof. By Proposition 1.2.12, we know that E ' R lim←−
p∈P

Ep and since F is cohomo-

logically complete, by Corollary 3.3.15 F ' R lim←−
q∈Q

F̂q. Then, we have successively

RHomT c(E, F ) ' RHom (R lim←−
p∈P

Ep,R lim←−
q∈Q

F̂q)

' R lim←−
q∈Q

RHom (R lim←−
p∈P

Ep, F̂q) (*)

' R lim←−
q∈Q

lim−→
p∈P

RHomT c(Ep, F̂q) (**)

' R lim←−
q∈Q

lim−→
p∈P

RHomBan(Êp, F̂q)

where the isomorphism (*) follows from [9, Proposition 3.6.3] and the isomorphism

(**) from Proposition 1.2.4.

3.4 Equivalence between D+(Fr) and D+(ProN(Ban))

Definition 3.4.1. The category of Fréchet spaces is the full additive subcategory

of T c whose objects are the Fréchet spaces. We denote it by Fr.

Proposition 3.4.2. Let f : E −→ F be a morphism of Fr.

(i) The kernel of f is the subspace f−1(0) of E endowed with the induced topology.

(ii) The cokernel of f is the quotient space F/f(E) endowed with the quotient

topology.

(iii) The image of f is the subspace f(E) of F endowed with the induced topology.

(iv) The coimage of f is the quotient space E/f−1(0) endowed with the quotient

topology.

Corollary 3.4.3. Let f : E −→ F be a morphism of Fr. The following conditions

are equivalent:

(i) f is strict in Fr,

(ii) f is relatively open,

(iii) f(E) is closed.

In particular, a morphism of Fr is strict if and only if it is strict as a morphism of

T c.
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Proof. It is sufficient to work as for
a

T c keeping in mind the closed graph theorem.

Corollary 3.4.4. Let f : E −→ F be a morphism of Fr. Then, f is a strict

monomorphism (resp. epimorphism) of Fr if and only if f is a strict monomorphism

(resp. epimorphism) of T c.

Proposition 3.4.5. The category Fr is quasi-abelian.

Proof. We know that Fr is additive and that any morphism of Fr has a kernel and

a cokernel.

Consider the cartesian square

E
f

// F

T

v

OO

u
// G

g

OO

of Fr where f is a strict epimorphism. By Corollary 3.4.4, f is a strict epimorphism

of T c and since T c is quasi-abelian, it follows that u is a strict epimorphism in T c
and also in Fr.

Finally, consider the cocartesian square

G
u

// T

E

g

OO

f
// F

v

OO
(*)

of Fr where f is a strict monomorphism. Denote α the morphism(
g

−f

)
: E −→ G⊕ F.

Recall that

T ' coker(α) ' (G⊕ F )/α(E).

By Corollary 3.4.4, f is a strict monomorphism in T c. Then, f is injective and for

any semi-norm pE of E, there is a semi-norm pF of F such that

pE(e) ≤ CpF (f(e)) ∀e ∈ E

for some C > 0. It follows that α is injective and that

pE(e) ≤ C sup(pF (−f(e)), pG(g(e))) ≤ CpG⊕F (α(e))
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where pG is an arbitrary semi-norm of G and pG⊕F (x, y) = sup(pF (x), pG(y)). Hence,

α is a strict monomorphism and its image is closed. Consequently,

cokerα ' (G⊕ F )/α(E)

and the cokernel of α in Fr coincides with the cokernel of α in T c. Then, the square

(*) is cocartesian in T c. By Corollary 3.4.4, f is a strict monomorphism of T c and

since T c is quasi-abelian, it follows that u is a strict monomorphism in T c and also

in Fr.

Proposition 3.4.6. The category Fr has enough injective objects.

Proof. This follows from Proposition 1.1.11 using the fact that countable products

of Banach spaces are Fréchet spaces.

Proposition 3.4.7. Fréchet spaces are cohomologically complete.

Proof. Let F be a Fréchet space. By Proposition 3.4.6, F has an injective resolution

I · in Fr such that Ik is also an injective object of T c. Therefore,

RCpl(F ) ' Cpl(I ·) ' I · ' F.

Definition 3.4.8. A small category I is called countable if the set of objects of I
is countable and if the set of morphisms between two arbitrary objects of I is also

countable.

Definition 3.4.9. Let C be an arbitrary category. A countable pro-object of C is a

functor X : Iop −→ C from some countable filtering category I to C. The category

of countable pro-objects of C is denoted by

ProN(C).

Remark 3.4.10. Working as in [1], one can check easily that for any filtering count-

able category I, there is a countable filtering ordered set I and a cofinal functor

Φ : I −→ J .

Thanks to [10, Lemma 4.1], one may even assume that I = N. In particular, for any

countable pro-object X of a category C, we may find a functor

X ′ : N −→ C

such that

X = “lim←−”
n∈N

X ′n.
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Proposition 3.4.11. If E is a quasi-abelian category then ProN(E) is a quasi-

abelian category.

Proof. Work as in [9, Proposition 7.1.5]

Lemma 3.4.12. For any object X : Iop −→ Ban of ProN(Ban),

L(X) = lim←−
i∈I

X(i)

is a Fréchet space. In particular, we may consider the functor

L : ProN(Ban) −→ Fr.

Corollary 3.4.13. The functor

L : ProN(Ban) −→ Fr

is right derivable and its derived functor

RL : D+(ProN(Ban)) −→ D+(Fr)

is an equivalence of categories.

Proof. Since Ban has enough injective objects, ProN(Ban) has enough injective

objects and L : ProN(Ban) −→ Fr is right derivable. The functor S : Fr −→
ProN(Ban) being exact, it gives rise to a functor

S : D+(Fr) −→ D+(ProN(Ban)).

Consider a complex F ·

0 −→ F−k −→ F−k+1 −→ F−k+2 −→ · · ·

of D+(Fr). For any n ≥ −k, since F n is cohomologically complete, we have

RL ◦S(F n) ' F n ' L ◦S(F n),

where the last isomorphism follows from Lemma 3.3.12. Hence, S(F ·) is a L-acyclic

resolution of S(F ·) and we have

RL ◦S(F ·) ' L ◦S(F ·) ' F ·.

Hence, the complexes of D+(Fr) are cohomologically complete. As in the proof of

Theorem 3.3.16, one checks that the functor

RL : D+(ProN(Ban)) −→ D+(Fr)

is an equivalence of categories and its quasi-inverse is given by

S : D+(Fr) −→ D+(ProN(Ban)).
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4 Duality functors

4.1 The inductive dual

Remark 4.1.1. Let us recall that if E is a semi-normed space, then the dual of E,

denoted here by D(E), is a Banach space. If p is the semi-norm of E, then the norm

of D(E) is defined by

‖τ‖D(E) = sup
p(x)≤1

|τ (x)|

for any τ ∈ D(E).

Recall that if E is a semi-normed space, we have the isomorphism of Banach

spaces D(E) ' D(Ê). In particular, if E is an object of T c with the weakest

topology, then D(E) ' 0.

Recall also that the duality functor

D : Ban −→ (Ban)op

is exact. As a matter of fact, consider a strictly exact sequence

0 −→ E
e−→ F

f−→ G −→ 0

of Banach spaces. Since C = l∞({0}) is an injective object of Ban, the sequence

0 −→ D(G)
D(f)−−→ D(F )

D(e)−−→ D(E) −→ 0

is an exact sequence of vector spaces. Since the images of D(f) and D(e) are closed,

the Banach homomorphism theorem shows that D(f) and D(e) are strict.

Let X be an object of T c. Recall that a set of continuous linear functionals

E = {fi : i ∈ I, fi : X −→ C}

is equicontinuous if for any ε > 0, there is an absolutely convex neighborhood of

zero V in X such that

|fi(v)| ≤ ε ∀v ∈ V, ∀i ∈ I.

It is equivalent to ask that there is an absolutely convex neighborhood of zero V in

X such that E ⊂ V ◦ or that E◦ is a neighborhood of zero in X. In particular, the

polar of any semi-ball of X is equicontinuous.

Definition 4.1.2. We denote by

Di : T c −→ T cop
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the inductive dual functor, which associates to any object X of T c the dual space

X ′ endowed with the inductive topology. In this topology, a basis of neighbor-

hoods of zero is formed by the absolutely convex subsets of X ′ which absorb any

equicontinuous set.

Lemma 4.1.3. If X is a semi-normed space, then Di(X) ' D(X).

Proof. Recall that if p is the semi-norm of X, then a basis of neighborhoods of zero

in D(X) is given by {bp(r)◦ : r > 0}. The conclusion follows easily.

Proposition 4.1.4. Let E be an object of T c and let P be its system of semi-norms.

Then, we have

Di(E) ' lim−→
p∈P

D(Ep) ' lim−→
p∈P

D(Êp).

Proof. By Lemma 4.1.3, it is sufficient to show that lim−→
p∈P

Di(Ep) ' Di(E). Consider

the continuous linear application

u : lim−→
p∈P

Di(Ep) −→ Di(E)

defined by

u ◦ rp = Di(ep) ∀p ∈ P
where ep : E −→ Ep is the continuous identity map. This application u is clearly

bijective.

To conclude, it is sufficient to show that u−1 is continuous. Consider a subset

U of Di(E) such that u−1(U) is a neighborhood of zero in lim−→
p∈P

Di(Ep). Let us show

that U is a neighborhood of zero in Di(E). Consider a semi-ball bp(1) of E. Denote

(bp(1))◦E′ (resp. (bp(1))◦E′p) the polar of bp(1) in E ′ (resp. E′p). Since

r−1
p (u−1(U)) = (u ◦ rp)−1(U) = (Di(ep))

−1(U)

is a neighborhood of zero in Di(Ep), (Di(ep))
−1(U) absorbs (bp(1))◦E′p. Hence, there

is C > 0 such that

(bp(1))◦E′p ⊂ C(Di(ep))
−1(U).

It follows that

(bp(1))◦E′ = (Di(ep))((bp(1))◦E′p) ⊂ C(Di(ep))[(Di(ep))
−1(U)] ⊂ CU.

Therefore, U absorbs the polar of any semi-ball of E and U is a neighborhood of

zero in Di(E).

The last isomorphism follows from Remark 4.1.1.
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Proposition 4.1.5. For any family (Xα)α∈A of objects of T c, we have

Di(
∏
α∈A

Xα) '
⊕
α∈A

Di(Xα).

Proof. Denote

f :
⊕
α∈A

Di(Xα) −→ Di(
∏
α∈A

Xα)

the canonical morphism of T c induced by the morphisms

Di(pα) : Di(Xα) −→ Di(
∏
α∈A

Xα)

where

pα :
∏
α∈A

Xα −→ Xα

is the canonical projection. It is well-known (see e.g. [6, Chap. IV, § 22, 5.(2)

(p. 284)] that f is a bijection. Hence, it is sufficient to prove that it is open.

Consider a closed neighborhood of zero U in
⊕

α∈A Di(Xα). Then,

U ⊃
〈⋃
α∈A

σα(Uα)

〉
where each Uα is a closed absolutely convex neighborhood of zero in Di(Xα) and σα :

Di(Xα) −→
⊕

α∈A Di(Xα) is the canonical embedding. Consider an equicontinuous

set E of (
∏

α∈AXα)′. There is an absolutely convex neighborhood of zero V in∏
α∈AXα such that

E ⊂ V ◦.
We may assume that

V =
∏
α∈A

Vα

where each Vα is a closed absolutely convex neighborhood of zero in Xα and the set

{α ∈ A : Vα 6= Xα}

is finite. Since Uα is a neighborhood of zero in Di(Xα), there is Cα > 0 such that

V ◦α ⊂ CαUα.

If Vα = Xα, then V ◦α = X◦α = 0 and we may assume Cα = 0. Then, setting

C = supα∈ACα, we get

E ⊂ (
∏
α∈A

Vα)◦ ⊂ f

〈⋃
α∈A

σα(V ◦α )

〉 ⊂ Cf

〈⋃
α∈A

σα(Uα)

〉 ⊂ Cf(U)
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where the second inclusion follows from e.g. [6, Chap. IV, § 22, 5.(1) (p. 283)].

Hence, f(U) is a neighborhood of zero in Di(
∏

α∈AXα).

Proposition 4.1.6. The functor Di : T c −→ T cop is left exact.

Proof. Consider a strictly exact sequence

0 −→ X
f−→ Y

g−→ Z −→ 0

of T c. We know that the sequence

Di(Z)
Di(g)−−−→ Di(Y )

Di(f)−−−→ Di(X) −→ 0

is algebraically exact and that the applications Di(g) and Di(f) are continuous.

Therefore, it is sufficient to show that Di(f) is strict, i.e. Di(f) is relatively open.

Let V be a neighborhood of zero in Di(Y ) and E be an equicontinuous subset of

X ′. We have to show that Di(f)(V ) absorbs E. Let pX be a continuous semi-norm

of X such that E ⊂ bpX (1)◦. Since f is a strict monomorphism, there is a continuous

semi-norm pY on Y such that

pX (x) ≤ pY (f(x)) ∀x ∈ X.

Let τX ∈ bpX (1)◦. We have |τX(x)| ≤ pX(x) and the Hahn-Banach theorem shows

that there is τY ∈ Y ′ such that

|τY (y)| ≤ pY (y) and τY ◦ f = τX .

It follows that bpX (1)◦ ⊂ Di(f)(bpY (1)◦). Since bpY (1)◦ is an equicontinuous subset

of Y ′, there is C > 0 such that bpY (1)◦ ⊂ CV . It follows that

bpX (1)◦ ⊂ Di(f)(bpY (1)◦) ⊂ CDi(f)(V ).

Hence, the conclusion.

Proposition 4.1.7. Let I be a small category. For any object X of T cIop
, we have

RDi(R lim←−
i∈I

X(i)) ' L lim−→
i∈I

(RDi(X))(i).

Proof. We know that X has an injective resolution in T cIop
of the form

0 −→ Π(S0) −→ Π(S1) −→ · · ·

where for l ≥ 0, Sl is an injective object of T cOb(I).
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On one hand, since for l ≥ 0,

lim←−
i∈I

Π(Sl)(i) '
∏
i∈I

Sl(i) and Di(
∏
i∈I

Sl(i)) '
⊕
i∈I

Di(S
l(i))

and since a product of injective objects is an injective object, RDi(R lim←−
i∈I

X(i)) is

given by the complex

· · · −→
⊕
i∈I

Di(S
1(i)) −→

⊕
i∈I

Di(S
0(i)) −→ 0.

On the other hand, by Proposition 4.1.5, one can check easily that for l ≥ 0

Di(Π(Sl)) ' q(Di(S
l)).

Then, L lim−→
i∈I

(RDi(X))(i) is given by the complex

· · · −→ lim−→
i∈I
q(Di(S

1))(i) −→ lim−→
i∈I
q(Di(S

0))(i) −→ 0.

Since for l ≥ 0, we have

lim−→
i∈I
q(Di(S

l))(i) '
⊕
i∈I

Di(S
l)(i) '

⊕
i∈I

Di(S
l(i)),

the conclusion follows.

Proposition 4.1.8. If X is a semi-normed space, then RDi(X) ' D(X).

Proof. We know that X has an injective resolution of the form

0 −→ I0 −→ I1 −→ · · ·

such that for l ≥ 0, I l = El × F l where El is an object of T c with the weakest

topology and F l is an injective Banach space. Since for l ≥ 0, I l is semi-normed,

we have Di(I
l) ' D(I l). Moreover, since C = l∞({0}) is an injective object of T c,

the complex

· · · −→ D(I1) −→ D(I0) −→ D(X) −→ 0

is algebraically exact. Then, the image of any morphism of this complex is closed and

by the Banach homomorphism theorem, the complex is strictly exact. Therefore,

RDi(X) ' D(X).
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Corollary 4.1.9. If (Xα)α∈A is a family of semi-normed spaces, then

RDi(
∏
α∈A

Xα) ' Di(
∏
α∈A

Xα).

Proof. Since direct products and direct sums are exact in T c, we may apply Propo-

sition 4.1.7 and we have

RDi(
∏
α∈A

Xα) '
⊕
α∈A

RDi(Xα).

The conclusion follows from Proposition 4.1.8 and Proposition 4.1.5.

Proposition 4.1.10. For any object X · of D+(T c), we have

RDi(RCpl(X ·)) ' RDi(X
·).

Hence,

RDi(E) ' RDi(Sep(E)) ' RDi(Cpl(E))

for any object E of T c.

Proof. Consider an object X · of D+(T c). We know that X · has an injective resolu-

tion by objects of the type

I = E ×
∏
α∈A

F α

where E is an object of T c with the weakest topology and F α is an injective Banach

space. For such an object, we have

Cpl(I) '
∏
α∈A

F α and Di(I) ' Di(
∏
α∈A

F α).

Since a product of injective objects is injective, we get

RDi(RCpl(I)) ' RDi(I).

Remark 4.1.11. Recall that since the functor D : Ban −→ (Ban)op is exact, it

induces an exact functor

Pro(D) : Pro(Ban) −→ Pro(Banop) ' (Ind(Ban))op.

For any small filtering category I and any functor X : Iop −→ Ban, we have

Pro(D)(“lim←−”
i∈I

X(i)) = “ lim−→ ”
i∈I

D(X(i)).
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Proposition 4.1.12. The diagram

D+(Pro(Ban))
Pro(D)

// D+((Ind(Ban))op) ' (D−(Ind(Ban)))op

LL

��

D+(T c)

S

OO

RDi

// D+(T cop) ' (D−(T c))op

is commutative.

Proof. Consider an object X · of D+(T c). We know that X · has an injective resolu-

tion by objects of the type

I = E ×
∏
α∈A

F α

where E is an object of T c with the weakest topology and F α is an injective Banach

space. On one hand, we have

Di(I) ' Di(E)⊕
⊕
α∈A

Di(F
α) ' D(E)⊕

⊕
α∈A

D(F α) '
⊕
α∈A

D(F α).

On the other hand, we have

S(I) ' S(E)×
∏
α∈A

S(F α) '
∏
α∈A

“F α”.

Therefore, we get successively

Pro(D)(S(I)) ' Pro(D)(
∏
α∈A

“F α”) ' Pro(D)( lim←−
J∈Pf(A)

∏
j∈J

“F j”)

' “ lim−→ ”
J∈Pf(A)

D(
∏
j∈J

F j) ' “ lim−→ ”
J∈Pf(A)

⊕
j∈J

D(F j) '
⊕
α∈A

“D(F α)”.

Since ⊕
α∈A

“D(F α)”

is L-acyclic (see [9, Proposition 7.3.9]) and since

L(
⊕
α∈A

“D(F α)”) '
⊕
α∈A

L(“D(F α)”) '
⊕
α∈A

D(F α),

the conclusion follows.
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Corollary 4.1.13. The diagram

D+(Pro(Ban))
Pro(D)

//

RL

��

(D−(Ind(Ban)))op

LL

��

D+(T c)
RDi

// (D−(T c))op

is commutative.

Proof. This follows directly from Theorem 3.3.16 and Proposition 4.1.12.

4.2 Relations with the strong dual

Definition 4.2.1. We denote by

Db : T c −→ T cop

the strong dual functor which associates to any object X of T c the dual space X ′

endowed with the strong topology. In this topology, a basis of neighborhoods of zero

is formed by the polar of the bounded subsets of X. The system of semi-norms is

thus given by

{pB : B bounded subset of X}

where pB is defined by

pB(τ ) = sup
x∈B
|τ (x)| ∀τ ∈ Db(X).

Proposition 4.2.2. The inductive topology is stronger than the strong topology.

Proof. Consider a bounded subset B of an object X of T c and let E be an equicon-

tinuous set. There is an absolutely convex neighborhood of zero V in X such that

E ⊂ V ◦. Since B is bounded, there is C > 0 such that B ⊂ CV . It follows that

E ⊂ CB◦ and that B◦ is a neighborhood of zero in Di(X).

Proposition 4.2.3. If X is a semi-normed space, then D(X) ' Db(X).

Proof. This is clear since semi-balls are bounded in X.
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Proposition 4.2.4. The functors

RDi : D+(T c) −→ D−(T c)op

and

RDb : D+(T c) −→ D−(T c)op,

are canonically isomorphic.

Proof. Let X be an object of D+(T c). We know that X has an injective resolution

by objects of the type I = E×
∏

α∈A F
α where E is an object of T c with the weakest

topology and F α is an injective Banach space for any α ∈ A. We have

Di(I) ' Di(E)⊕
⊕
α∈A

Di(F
α) '

⊕
α∈A

D(F α).

Moreover,

Db(I) ' Db(E)⊕
⊕
α∈A

Db(F α) '
⊕
α∈A

D(F α)

where the first isomorphism follows from [6, Chap. IV, § 22, 5.(4) (p. 287)]. There-

fore, RDi(X) ' RDb(X).
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