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In this paper, we prove that the category of topological abelian groups
is quasi-abelian. Using results about derived projective limits in quasi-abelian
categories, we study exactness properties of the projective limit functor in .
If is a projective system of indexed by a filtering ordered set, we give
a necessary and sufficient condition for the derived projective limit of to
be strict. We also characterize the countable projective systems of complete
metrizable abelian groups which are lim-acyclic in .
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derived projective limits in quasi-abelian categories obtained in [5] to study exact-

ness properties of the projective limit functor for topological abelian groups. In

particular, if is a projective system of indexed by a filtering ordered set ,

we give a necessary and sufficient condition for the complex

R lim

to be strict. When we assume moreover that is countable and each is metrizable

and complete, we also give a necessary and sufficient acyclicity condition. This last

result is related to theorems of Palamodov (cf. [2, 3]).

In the first section, we recall the definition of the category of topological

abelian groups and the form of kernels and cokernels in this category. This allows

us to characterize the strict morphisms of and to establish that this category is

quasi-abelian.

The first part of Section 2 is devoted to a review of some of the results on derived

projective limits in quasi-abelian categories established in [5]. More precisely, we

recall that if is a quasi-abelian category with exact products, the projective limit

functor is right derivable and that its derived functor is computable by means of

Roos complexes. We also recall that if : is a cofinal functor between

small filtering categories and if is a projective system indexed by , then the

derived projective limits of and are isomorphic. In order to be able to apply

these results to , we end this section by showing that products are exact in this

category.

In the third section, we study strictness properties of the derived projective limit

functor in . We establish that if is a projective system of indexed by a

filtering ordered set, the differential of its Roos complex is strict for 1 and

that is strict if and only if satisfies condition SC (i.e. if and only if for any

and any neighborhood of zero in , there is such that

( ) (lim ) +

for any ). As a corollary, we get that a projective system of indexed

by a filtering ordered set is lim-acyclic in if and only if it is lim-acyclic in the

category of abelian groups and satisfies condition SC.

In the last section, we limit our study to countable projective systems of .

First, we establish a slight generalization of the classical Mittag-Leffler theorem for

countable projective limits of complete metric spaces. Using this result and results

of Section 3, we give a necessary and sufficient condition for a countable projective

system of complete metrizable abelian groups to be lim-acyclic in .
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To conclude this introduction, I want to thank J.-P. Schneiders for pointing out

the research direction followed in this paper and for the useful discussions we had

during its preparation.

In this paper, by a , we mean an abelian group endowed

with a topology such that the applications

+ :

and

:

are continuous.

Recall (see e.g. [1]) that if is a topological abelian group, then there is a basis

of neighborhoods of zero such that

(TAb1) , 0,

(TAb2) , = ,

(TAb3) , , such that ,

(TAb4) , such that + .

Conversely, let be a set of subsets of an abelian group satisfying (TAb1)–

(TAb4). Then, the collection of subsets of such that

such that +

is a topology of abelian group on for which is a basis of neighborhoods of zero.

Let be a topological abelian group, let be a subgroup of and let be a

basis of neighborhoods of zero on . The set

= :

is clearly a basis of neighborhoods of zero for a topology of abelian group on . We

call the topology so defined on the .

Similarly, if : denotes the canonical morphism, the set

= ( ) :

forms a basis of neighborhoods of zero for a topology of abelian group on .

The topology so defined on is called the .



′

4

∏

∏

/ /

d
O ?

/ /

d
O ?

1

1

1

1

1

1

0

1

∈

∈

∈
∈

∈

−

−

−

−

′ −

′

−

′

−

Fabienne Prosmans

IIIIIIIII

~
~~

~~
~
~~

α α A

α

α α α A

α A

α α α A α α

α A

α α α α α α α

i u

v

v

Definition 1.1.

Proposition 1.2.

Corollary 1.3.

Proposition 1.4.

TA

TA
V

∀ ∈ TA

{ ∈ ∀ ∈ }

V { ∈ V { 6 } }

TA

TA
−→ TA

{ }
{ } −→

−→

{ }

TA −→ TA
◦ ⊂ { }

−→ { } 7→

{ }

{ }

b

b M

M α A M b

M m m M α A

V V M V , α V M .

b

b

u M N b

u M

i u M u

N/u M

q N N/u M u
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u M/u
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We denote by the category whose objects are the topological

abelian groups and whose morphisms are the continuous additive maps.

( )

( ) ( )

= ( ) :

= : = : =

:

( 0 )

: ( 0 )

( )

: ( )

( )

( 0 )

(i) Let be an object of and let : be a morphism of

such that = 0. Since ( ) ( 0 ), the application

: ( 0 ) ( )

is well-defined. One sees easily that is additive, continuous and makes the diagram

( 0 )

commutative. Since is the unique application satisfying these properties,

( ( 0 ) )

The category has products. More precisely, let be

a family of topological abelian groups and let be a basis of neighborhoods of zero

on . Then, the product of the family in is obtained by

endowing the abelian group

with the topology associated to the basis of neighborhoods of zero

or is finite

The category is additive.

The category has kernels and cokernels. More precisely, let

be a morphism of .

(i) The subgroup of endowed with the induced topology together

with the canonical monomorphism form a kernel of .

(ii) The quotient group endowed with the quotient topology together

with the canonical epimorphism form a cokernel of .

(iii) The image of is the subgroup of endowed with the induced

topology.

(iv) The coimage of is the quotient group endowed with the quo-

tient topology.

Proof.



5

1

1

/

 

/

� z

/

 

/

� z

′ ′

′

′

−

−

u M

u q

v

v

u

u

Proposition 1.5.

@@
@
@@

@
@@

uu
uu
uu
uu
u

( )

1 1

1 1 1 1 1

1

0

1

( 0 )

1

1 1
( 0 )

′

′

− −

− − − ′ − −

− ′

′

′

′

′

−

{ }

−

− −
{ }

TA −→ TA
◦

−→ 7→

⊃ ◦

−→ TA

⊃ ∩

−→
−→

{ } −→

∀ ∈

−→ { } 7→

Derived Projective Limits of Topological Abelian Groups

A morphism of is strict if and only if for any

neighborhood of zero in , there is a neighborhood of zero in such that

Proof.

u

X b v N X b

v u

v N/u M X n v n

v

V X v V N q v V

N/u M

v V q q v V q v q V q v V .

v V N/u M v

v

M N N/u M

X

v

N/u M , q

u

u M N b

V M V N

u V u M V .

u M N

u u u

u M/u u M

u m u m m M.

u u u

u

u u M M/u u m m

is a kernel of .

(ii) Let be an object of and let : be a morphism of such

that = 0. The application

: ( ) [ ] ( )

is well-defined and additive. Let us show that is continuous. Consider a neigh-

borhood of zero in . Since ( ) is a neighborhood of zero in , ( ( )) is

a neighborhood of zero in ( ). Moreover, we have

( ) ( ( ( ))) = (( ) ( )) = ( ( ))

It follows that ( ) is a neighborhood of zero in ( ) and that is continuous.

Of course, makes the diagram

( )

commutative. Since is the unique application having these properties,

( ( ) )

is a cokernel of .

(iii) and (iv) follow from (i) and (ii).

:

( ) ( )

By definition, : is strict if and only if the canonical morphism

˜ : coim im is an isomorphism. This canonical morphism

˜ : ( 0 ) ( )

is defined by

˜([ ] ) = ( )

One checks easily that ˜ is bijective. Moreover, ˜ is continuous. Hence, is strict

if and only if ˜ is continuous.

So, we have to show that

˜ : ( ) ( 0 ) ( ) [ ]
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The category is quasi-abelian.

Proof.

V M

V N

u V u M V .

V

M q M M/u q V

M/u u

u q V u q V u V

u M V N

u V V u M .

W M/u

V M W q V

V N

u V u M V .

u W u W u q V u V u M V .

u M V u M u W

u M u

b

b

M N

M N

u v

α u g M N N ,

M α m , n u m g n

is continuous if and only if for any neighborhood of zero in , there is a neigh-

borhood of zero in such that

( ) ( )

The condition is necessary. As a matter of fact, let be a neighborhood of zero

in . If : ( 0 ) is the canonical morphism, ( ) is a neighborhood

of zero in ( 0 ). Since ˜ is continuous,

(˜ ) ( ( )) = ˜( ( )) = ( )

is a neighborhood of zero in ( ). Hence, there is a neighborhood of zero in

such that

( ) ( )

The condition is also sufficient. Let be a neighborhood of zero in ( 0 ).

There is a neighborhood of zero in such that ( ). By hypothesis, there

is a neighborhood of zero in such that

( ) ( )

Therefore, we have

(˜ ) ( ) = ˜( ) ˜( ( )) = ( ) ( )

Since ( ) is a neighborhood of zero in ( ), (˜ ) ( ) is a neighborhood

of zero in ( ). Hence, ˜ is continuous.

We know that is additive and has kernels and cokernels.

(i) Consider a cartesian square

where is a strict epimorphism and let us show that is a strict epimorphism.

Recall that if we set

= :

then we may assume that

= ker = ( ) : ( ) = ( )
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0 1

1

0 1

0 0 1 1

0 0

0 0 0

1
1

0 1

1 1
1

0

1 1

0 0

0 1 0

1 1 0 0

1 0 1 0 0

1 1 1

1

1 1 1

0 0

1
1 0 0

f p i v p i

i α M N

v

V M α

V V V α

V M V N

u V N

u V u M V .

V g V N

v V v M V g V ,

v

M N

M N

u v

α
f

u
M M N ,

N α M N /α M ,

v q i g q i

q M N M N /α M

v

V M U

M

U U V .

u V N

u f U u M V .

and that

= and =

where : ker is the canonical monomorphism.

Of course, the morphism is surjective. Let us prove that it is strict. Consider

a neighborhood of zero in = ker . We may assume that

= ( ) ker

where is a neighborhood of zero in and is a neighborhood of zero in .

Since is strict, by Proposition 1.5, there is a neighborhood of zero in such

that

( ) ( )

Then, ( ) is a neighborhood of zero in . Since

( ) ( ) ( )

by Proposition 1.5, is strict.

(ii) Consider a cocartesian square

where is a strict monomorphism. Let us show that is a strict monomorphism.

Recall that if we set

= :

then we may assume that

= coker = ( ) ( )

= and =

where : ( ) ( ) is the canonical epimorphism.

Clearly, the morphism is injective. Let us prove that it is strict. Consider a

neighborhood of zero in . We know that there is a neighborhood of zero in

such that

+

Since is strict, there is a neighborhood of zero in such that

( ( )) ( )



b

∏

8

α

α

TA

α

α

i

j i

j i

op

op

op

op

op

′

′

I

∈I

I

I I

I

I

I I

Definition 2.1.

Fabienne Prosmans

1 0 1 1 0 0

1 1 1 0

op

Ob( )

op

Ob( )

Ob( )

projective system

product type

q U V N M N /α M

v V v M q U V .

v

S i S j

S i i

α j i

p S i S j

E

S

E S

2 General results on derived projective limits in

× ⊕

⊃ ∩ ×

E I E
I E

E I

←− E −→ E

E

I E

E −→ E

−→
I −→ E ∈ I I

−→ I

−→ −→

I −→ E
E

'

E

E −→ E

Moreover, ( ) is a neighborhood of zero in = ( ). One can

check that

( ) ( ) ( )

Hence, is strict.

Let be a quasi-abelian category and let be a small category. Recall that

denotes the quasi-abelian category of functors from to (also called projective

systems of indexed by ). For the reader convenience, we recall how to derive the

projective limit functor

lim :

if is a quasi-abelian category with exact products (see [5] for more details).

Note that, hereafter, we will often denote by the same symbol a set and its

associated discrete category.

Let be a small category and let be a quasi-abelian category

with products. We define the functor

Π :

by setting

Π( )( ) = ( )

for any functor : Ob( ) and for any . Let be an object of . For any

morphism : of , we denote by

: Π( )( ) ( )

the canonical projection.

A

:

is of if there is an object of such that

Π( )

in .

We denote by

O :

the canonical functor.
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Proposition 2.2.

Definition 2.3.

I
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···

···

I

··· I ···
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α

α αn
n

n

α αn
n

α αn

n

α αn

n

α

l

αl αl
l

αn
n

α αn
n

op

op

0
1

1

0
1

0
1 +1

+1 1
2 +1

+1

0
1

1
+1

+1
+1

+1

0
1

i i

j i

n

n

i i

α α
n

i i

n

n
R ,E

n n

i i

n
R ,E

i i

n

l

l

i i i i

n

i i
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S

S i S i .

E

f E E

p f i E α

i α j i

R , C

E

R ,E n <

R ,E E i n ,

i i

p R ,E E i

d R ,E R ,E

p d E α p

p

p .

R ,E E

I E

E

←− '

E

−→

−→ ◦
I −→ I
I E

I · E −→ E

I −→ E

I ∀

I
−→ −→

∀ ≥

−→ · · · −→
I

−→ −→ I −→

I −→ I

−→ −−−→ ◦ ◦ −→ −−−→

− −→ −−−−→ −−−→

− −→ −→
I

Let be a small category and let be a quasi-abelian category

with products.

(a) For any object of , we have the isomorphism

(b) For any object of , the morphism

defined by

for any object of and any morphism of is a strict monomorphism.

lim Π( )( ) ( )

: Π(O( ))

( ) = ( )

:

Let be a small category and let be a quasi-abelian category

with products. We define the functor

( ) : ( )

in the following way. For any functor : , we set

( ) = 0 0

and

( ) = ( ) 0

where

is a chain of morphisms of . Denoting by

: ( ) ( )

the canonical projection, we define the differential

: ( ) ( )

by setting

= ( )

+ ( 1)

+ ( 1)

We call ( ) the .
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I
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E i

q E i E i

E

ε , E E i d

p ε , E q i .

E

E i R ,E R ,E

S

S i R , S .

S

E E

E

E i R ,E .

E ∈ I

←− −→

I E
E

I ←− −→

◦ I ∀ ∈ I

I E
E

−→←− −→ I −→ I −→ · · ·

I E
E

−→ I

I E

F { ∈ E }

←−

←− E −→ E

E

←− ' I

Notation 2.4.

Proposition 2.5.

Definition 2.6.

Proposition 2.7.

Proposition 2.8.

Let be an object of . For any , we denote by

: lim ( ) ( )

the canonical morphism.

( ) : lim ( ) ker

( ) =

Let be a small category and let be a quasi-abelian category

with products. An object of is a if the co-

augmented complex

0 lim ( ) ( ) ( )

is strictly exact.

( ) ( Π( ))

Π( )

= Ob( ) :

lim

lim :

R lim ( ) ( )

Let be a small category and let be a quasi-abelian category

with products. For any object of , there is a canonical isomorphism

defined by

Let be a small category and let be a quasi-abelian category

with products. For any object of , there is a canonical homotopy equivalence

In particular, is a Roos-acyclic projective system.

Let be a small category and let be a quasi-abelian category

with exact products. Then, the family

is Roos-acyclic

is -injective. In particular, the functor

is right derivable and for any object of , we have a canonical isomorphism
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Proposition 2.9.

Theorem 2.10.

Proposition 2.11.
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E
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E
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I I ∈
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TA

TA
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Let be a cofinal functor between small filtering

categories and let be a quasi-abelian category with exact products. For any

object of , the canonical morphism

is an isomorphism in .

Let be a quasi-abelian category with exact products. Consider

a functor

where is a small filtering category. If with , then

Products are exact in .

Proof.

:

( )

R lim ( ) R lim ( ( ))

( )

Recall that if is a small filtering category, there is a small filtering ordered set

and a cofinal functor Φ : . Since any non empty set of cardinal numbers

has a minimum, we may assume that has the smallest possible cardinality. We

call this cardinality the cofinality of and denote it cf( ).

Recall also that for , denotes the ( + 1)-th infinite cardinal number.

:

cf( )

(R lim ( )) = 0 + 1

Since we know already that is quasi-abelian, the following proposition will

allow us to apply the preceding results to treat derived projective limits of topological

abelian groups.

Let be a small set. The functor

:

being kernel preserving, it is sufficient to show that the product of strict epimor-

phisms is a strict epimorphism. Consider a family

:

of strict epimorphisms. Of course, the application

:
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I

←− TA −→ TA
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←−
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3 Strictness properties of derived projective limits in

i I i

i I

i

i i

J

i i i

i i

i i i i i

J i i

i I

i

i I i

i I

i i

i I

i i

i I

i

i I i

i

i

i I

i

k

i I

i

V

M

V V

V M

i / i , , i , J

V M i I u

V N

u V u M V .

i / i , , i V N

V V

N

u V u M V .

u

b b

M b

M i R ,M

R ,M M

X

LH X b.

Let be a small category. The functor

is right derivable and for any object of , we have

where is the Roos complex of .

Proof.

is surjective. Let us show that it is strict. Consider a neighborhood of zero in

. We may assume that

=

where is a neighborhood of zero in such that for

( )

we have = . Since for any , is strict, there is a neighborhood of zero

in such that

( ) ( )

For , we may assume that = . Hence,

=

is a neighborhood of zero in and

( ) ( )

By Proposition 1.5, is strict.

lim :

R lim ( ) ( )

( )

This follows from Proposition 2.8.

Our aim in this section is to give a condition for the complex

R lim

to be strict (i.e. to have strict differentials). Thanks to the following lemma, this is

equivalent to give a condition in order that

(R lim )
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Definition 3.2.

Remark 3.3.

k d k d k

k k

k

k d k d k

I

i

i,k k i

i I

i

i

i i

i

i i

i

i

i

i i

i

i

i

i i

k i

k

i

i

i

k

l

i i
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E

· · · −−→ −→ · · ·

E
∈ E

−−→ −→

∈ TA ∈
≥

⊂ ←− ∀ ≥

I I −→ TA
←−

{ ∈ ∀ −→ I}

I ←−
∈ I

⊃

∩←−

· · · ∈
· · ·

∈ { · · · }

⊃ ∩←−

X X X X

LH X d

LH X

X X X

I

X b i I U

X j i

x X q X U k j.

F b

F i

f F i F α f f α i i

F i

V F i

i U F i

V q U .

V

W F i

W , ,W k

F i , F i W F i

i / i , , i

V W F i q W .

Let be a quasi-abelian category and let

be a complex of . Then,

(a) if and only if the differential is strict;

(b) if and only if the sequence

is strictly exact.

:

( )

( ) = 0

Let be a filtering ordered set. We say that a projective system

satisfies condition SC if for any and any neighborhood of zero

in , there is such that

( ) (lim ) +

Let be a small category and let : be a functor. One

can check easily that lim ( ) is the abelian group

( ) ( ) : ( ) = : in

endowed with the topology induced by that of ( ).

If moreover is filtering, then for any neighborhood of zero in lim ( ), there

is and a neighborhood of zero in ( ) such that

( )

As a matter of fact, we know that contains a neighborhood of the form

( ) lim ( )

where

( )

are neighborhoods of zero in ( ) ( ) respectively and = ( ) if and

only if . Hence, we have

( ) lim ( ) = ( )
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Theorem 3.4.

−

−

∈

∈

∈

←−

∈

←−

∈ ∈

=1

1

1

1

0
( )

lim lim

1

Fabienne Prosmans

i l

i l

i

k

l

i i

i i

I

i I

i

R I,X

u v

I

i I

i

I

e q

i I

i

e

i I

q

i I

i

i I

i

i

α i i l , , k

F α F i F i l , , k

U F α W

F i

q U V.

I X b

LH X b

X

d X

X

X Y Z

b v

X b

e X X .

Z, q e

X X Z

X X i Z LH X

I ∈ I

−→ · · ·

I
−→ · · ·

⊂

TA

←− ∈ TA

−→ −→ −→ −→

TA ←−
TA

−→

−→ −→ −→ −→

−→←− −−−→←− −−−→ ←− −→ ←− −→

Let be a filtering ordered set and let be an object of .

Then,

if and only if satisfies condition SC.

In particular, the differential of the Roos complex of is strict if and

only if satisfies condition SC.

Proof.

Since is filtering, there is and there are morphisms

: = 1

of . Since

( ) : ( ) ( ) = 1

is continuous,

= ( ( )) ( )

is a neighborhood of zero in ( ) and we see easily that

( )

(R lim )

(a) Let us prove that the condition is sufficient.

We will decompose the argument in two steps.

(i) First, let us show that it is sufficient to prove that if

0 0

is a strictly exact sequence of , then lim is a strict morphism.

Let be an object of . We know that there is a strict monomorphism

: Π(O( ))

If ( ) is the cokernel of , then the sequence

0 Π(O( )) 0

is strictly exact and it gives rise to the long exact sequence

0 lim lim Π(O( ))( ) lim (R lim ) 0 (*)
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i I

i I

i

i I

f

i I

i

i I

i

i I

i

u v

I

i I

i

i I

i

i I

i

i I

i

i I

i

i I

i

i I

i

i i

i i

i i

i I

i

i I

i i i

i I

i

i I

i

b X

f q

J b b

f

X i Z f

b b

J f J f

LH X

LH X b.

X Y Z

b X v

V Y

V Z

v V v Y V .

V Y V

q U

U Y i I

i I

V Y V Z

v q V v Y V .

LH TA ←−

←−

TA −→ LH TA

←− −→←− −→ −→

TA LH TA

'
' ←−

←− ∈ TA

−→ −→ −→ −→

TA ←−

←−

←−

←− ⊃ ←− ←− ∩

←−

∈
∈
←−

←− ⊃ ←− ←− ∩

of ( ) since Π(O( )) is lim-acyclic. Set

= lim

and let

: ( )

be the canonical functor. Since is strict, the sequence

lim Π(O( ))( ) lim coker 0

is strictly exact in . Hence, it gives rise to an exact sequence in ( ).

Therefore,

(coker ) coker( ( ))

(R lim )

since the sequence (*) is exact and we have

(R lim )

(ii) Let us prove that if

0 0

is a strictly exact sequence of such that satisfies condition SC, then lim

is strict. For this, it sufficient to show that for any neighborhood of zero in lim ,

there is a neighborhood of zero in lim such that

(lim )( ) (lim )(lim )

Let be a neighborhood of zero in lim . By Remark 3.3, contains a neigh-

borhood of the form

( )

where is a neighborhood of zero in for some .

Consequently, it is sufficient to show that for any and for any neighborhood

of zero in there is a neighborhood of zero in lim such that

(lim )( ( )) (lim )(lim )
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′ ′ ′ ′ − ′

∈

′

′ − ′

′

′

−

∈

∈ ∈

−

∈

−

∈ ∈

−

∈

∈

′

′ ′

′

′

′

∈
⊂

≥
⊂ ←− ∀ ≥

∩ ⊂

⊂

←−

←− ←− ∩ ⊂ ←−

∈ ←− ←− ∩

∈

∈ ←−

←−

∈

⊂

∈

− ∈

∈

−

i i

i i i i i i i i

i,k k i

i I

i i

j i,j i j j j

j j j j j

j

j j j

j j j

i I

i

i I

i

i I

i j j

i I

i i i

i I

i

i I

i j j

j j

i I

i

i I

i

j j j j

j j j

j j

j j j j

j j j j

j j

j j j j

i I V Y

V Y V V V U u V

j i

x X q X U k j.

V y V v W Z

v Y W v V .

v

W v V .

q q W Z

v Y q W v q V .

γ v Y q W .

q γ W

β Y

v β γ.

q γ v q β W

W v V ,

β V

v q β v β .

q β β v u

α X

q β β u α .

Let and let be a neighborhood of zero in . There is a neighborhood of

zero in such that + . Set = ( ). By hypothesis, there is

such that

( ) (lim ) +

If we set = ( ), since is strict, there is a neighborhood of zero in

such that

( ) ( )

Since is an epimorphism, we get

( )

Moreover, since is continuous, ( ) is a neighborhood of zero in lim . To

conclude, let us show that

(lim )(lim ) ( ) (lim )( ( ))

Consider

(lim )(lim ) ( )

Hence,

( )

and there is lim such that

(lim )( ) =

It follows that

( ) = ( ( ))

and since

( )

there is such that

( ( )) = ( )

Hence, we have

( ) ker = im

and there is such that

( ) = ( )
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q β y β q β y q β u α u x α .

x X q X U ,

α X

x α q α U .

q β u α y β u x α u q α y β u x α q α .

y β y V V

u x α q α u U V ,

q β u α V .

v β u α v β γ

γ v q V

i I

U X

X R I,X .

LH X b,

d X X

i i,j j i i,j j j j i i,j j

i,j j i

i I

i i

i I

i

i,j j i i

i

i I

i i,j j i i,j j i i i,j j i i,j j i

i,j j i,j j i

i i,j j i i i i

i

i I

i i

i I

i

i I

i

i I

i

i I

i i i

i

i I

i

i I

i

R I,X

i I

i

j i

j

Remark that

( ) ( ) = ( ) ( ( ) ( )) = ( )( )

Now, thanks to the relation

( ) (lim ) +

there is lim such that

( ) ( )

Then, we have successively

( (lim )( )) = ( )+ ( ( )) ( ( )) = ( )+ ( ( ) ( ))

Since

( ) ( )

and

( ( ) ( )) ( )

we get

( lim ( ))

Moreover, since

(lim )( (lim )( )) = (lim )( ) =

we have

lim ( ( ))

and the sufficiency of the condition is established.

(b) Let us prove the necessity of the condition. Let be an element of and let

be a neighborhood of zero in .

We know that

R lim ( )

Since

(R lim )

by Lemma 3.1,

:
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k k k

k k k k

k k k k k k

k k k k

∈

∈ ∈

− −

∈ ∈

∈

−

′ −

′

′

∈

′

′ ′ ′

′

′

∈

0
( )

1 0
( )

1

0
( )

0
( )

1

1

0
( )

0
( )

0
( )

0
( )

0 0

0

0

≤ ∀ ∈

∩ ⊂

∈

≤ ≤ ≤ ∀ ∈

≥ ∈

≤

∈ ∈

◦ ◦ −

∈

∈

− ∈

∈ ←−

−

≤

− − − ◦

∈

∈ ←−

k k k K

k k

j ,i j

R I,X

i I

i

k K

j ,i j ,i R I,X i

k k

n n

l
l,n n

l l I i I i

j ,i R I,X j ,i i j

R I,X

k K

j ,i j ,i

i

R I,X R I,X

R I,X

R I,X

i I

i

i,n n i i i i i i

i,n n i i

i

i,n n i

i I

i

j , i

j i k K

V X

d X p V d p U .

I m I

i m, i m, j m k K.

n m β X

β
x β l n

β β X k K

p d β x p β p β .

d β p V

β p U

d β d β .

β β d .

d ε I,X ε I,X

α X

β β ε I,X α .

i n

x β p β β p β p β β p ε I,X α q α .

x β p β q α

p β U

x β U q X .

is a strict morphism. Therefore, there is a finite family of pairs ( ) such that

and there are neighborhoods of zero in such that

( ) ( ) ( ( )) (*)

Since is filtering, there is such that

Consider and . If we set

=
( ) if

0 otherwise

then = ( ) and for any , we get

( ) = ( ) ( ) = 0

It follows that

( ) ( )

and thanks to the relation (*), there is ( ) such that

( ) = ( )

Hence,

ker

Recall that ker = im( ( )), where ( ) denotes the canonical aug-

mentation of the Roos complex. Therefore, there is lim such that

= ( )( )

Since , we have

( ) ( ) = ( ) = ( ) = ( ( ))( ) = ( )

Consequently,

( ) = ( ) + ( )

and since ( ) , we see that

( ) + (lim )

The conclusion follows easily.
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TA

←− ∈ TA ∀ ≥

≥

−→ TA

−→ TA

∈

≥
−→

←− '

←− −→

←− ⊂ ←−

−→ TA
∈

≥
⊂ ←− ∀ ≥

≥ ∈ −→ ∈
∈ ←− ∈

I

k

i I

i

k
R I,X

l i

l

i,k

i I i I

i

i

i I

i,k i

i I

i

i I

I

i i i

i,k k i

i I

i i

k k k k k k k

k k k

i I

i i

i,k k i

I X b

LH X b k .

d X k

S I b

S I b

i I U

S i S .

k i

p S k S i

S i S

q S i S i

p S k q S i q S i U.

f X Y b X

Y i I V

Y f V X

j i

x X q X f V k j.

k j y Y f X Y x X

f x y α X β f V

x x q α β.

Let be a filtering ordered set and let be an object of .

Then,

In particular, the differential of the Roos complex of is strict for .

Proof.

(R lim ) 2

1

We will decompose the argument in three steps.

(a) First, let us show that for any functor : Ob( ) , the functor

Π( ) :

verifies the condition SC. Consider and a neighborhood of zero in

Π( )( ) =

If , the morphism

: Π( )( ) Π( )( )

is the canonical projection. Moreover, we know that

lim Π( )( )

and that

: lim Π( )( ) Π( )( )

is the canonical projection. It follows that

(Π( )( )) = (lim Π( )( )) (lim Π( )( )) +

(b) Next, consider an epimorphism : of . Let us show that if

verifies the condition SC, then verifies the condition SC. Let and let be a

neighborhood of zero in . Since ( ) is a neighborhood of zero in , there is

such that

( ) (lim ) + ( )

Consider and . Since : is surjective, there is such

that ( ) = . Then, there are lim and ( ) such that

( ) = ( ) +
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←−

⊂ ←−

TA

−→

−→ −→ −→ −→

· · · ←− ←−

←− ←− · · ·

←−

←− ∀ ≥

←− ' ←− ∀ ≥

←− ∈ TA

←− ∈ TA

←− ∈ TA ∀ ≥

i,k k i,k k k i i,k k i i i

i I

i i

i,k k i

i I

i

I

e q

k

i I

k

i I

i

k

i I

i
k

i I

i I

k

i I

k

i I

i
k

i I

i

i I

i

i I

i

k

i I

i

y y y f x f x x f q α β q f α f β .

y Y q Y V.

X b

e X X .

Z, q e

X X Z

LH X i LH Z

LH X LH X i

X

LH X i k

LH Z LH X k .

X Z

LH Z b

LH X b.

LH X b k .

Therefore, we get successively

( ) = ( ( )) = ( ( )) = ( ( ) + ) = ((lim )( )) + ( )

It follows that

( ) (lim ) +

(c) Finally, let be an object of . We know that there is a strict monomor-

phism

: Π(O( ))

If ( ) is the cokernel of , the sequence

0 Π(O( )) 0

is strictly exact and we get the long exact sequence

(R lim Π(O( ))( )) (R lim )

(R lim ) (R lim Π(O( ))( ))

Since Π(O( )) is lim-acyclic, we have

(R lim Π(O( ))( )) = 0 1

and then

(R lim ) (R lim ) 1

By (a), Π(O( )) verifies the condition SC and by (b), verifies the condition SC.

Then, by Theorem 3.4,

(R lim )

and the preceding isomorphism shows that

(R lim )

Reasoning by induction, we see easily that

(R lim ) 2
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k

i I

i
k

k
R I,X

I

i I

i

i I

i

i I

i

i I

i

i I

i

i I

i

k

i I

i

i I

i

k k k

k

i I

i

i I

I

i I

i

i I

i

i I

i

i I

i

i I

i

LH X LH R I,X b k ,

d k

b b

X b X I X

b

X X

X X X

X X

LH X k .

X R I,X .

R I,X R I,X R I,X

b k b

LH X k .

b b

LH X X

X X .

LH X b

←− ' ∈ TA ∀ ≥

≥

TA −→ A
TA

TA

←− ' ←−

←− ' ←−

⇒ ←− ' ←−

←− ∀ ≥

←− '

−→ −→

TA ≥ A

←− ∀ ≥

←− A −→ A

←− ' ←−

←− ' ←−

←− ∈ TA

Let be the forgetful functor which associates to any

object of , the abelian group . Let be a filtering ordered set. If is an

object of , then the following conditions are equivalent:

(i) ,

(ii) and satisfies condition SC.

Proof.

Finally, since

(R lim ) ( ( )) 2

Lemma 3.1 shows that is strict for 1.

Φ :

lim R lim

lim Φ( ) R lim Φ( )

(i) (ii). Since lim R lim , we have

(R lim ) = 0 1

We know that

R lim ( )

Hence, the sequence

( ) ( ) ( )

is strictly exact in for 1. Therefore, this sequence is exact in . It follows

that

(R lim Φ( )) = 0 1

Moreover, the functor lim : being left exact, we have

(R lim Φ( )) lim Φ( )

and we obtain

lim Φ( ) R lim Φ( )

Finally,

(R lim ) = 0
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1
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⇒

←− ∈ TA ∀ ≥

←− ∀ ≥

A

−→ −→

TA ≥

←− ≥

←− ' ←−

←− ' ←−

−→

−→
∈

≥

∈

≥ ≥

k

i I

i

k
R I,X

k

i I

i

k
R I,X

k
R I,X

k k k

k

i I

i

i I

i

i I

i

i I

i

i I

i

4 An acyclicity condition for projective systems of

If is a countable filtering ordered set, there is a cofinal functor

Proof.

X

LH X b k .

d

LH X k ,

d d

b

R I,X R I,X R I,X

b k

LH X k .

LH X X ,

X X .

A

α A.

A b A A

α A

α b .

α A

α b , α α .

and by Theorem 3.4, verifies the condition SC.

(ii) (i). By Theorem 3.4 and Theorem 3.5,

(R lim ) 1

Hence, is strict. Moreover, since

(R lim Φ( )) = 0 1

we have

ker = im

in . Therefore, the sequence

( ) ( ) ( )

is strictly exact in for 1 and

(R lim ) = 0 ( 1)

Since

(R lim ) lim

we obtain

lim R lim

:

Since is countable, there is a surjection : . Since is filtering, we

may find (1) such that

(1) (1)

In the same way, we may find (2) such that

(2) (2) (2) (1)
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Remark 4.2.

Proposition 4.3.

≥ ∀ ∈

−→

{ ∈ }

−→

⊂

≥
−→
∈ ≥

⊂ ∀ ≥
∈ ≥

⊂ ←−

←−

−→

∈

k

ε

η ε

a a,b a A

a,b b a

a,b b a,c c ε

a,b b a

a A

a

ε

a A

a

k α k
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α k A

α k b k k .

α A

F E ε >

F x E d x, F < ε .

f E F

ε > η >

f A f A

A E

X , x

A

b a

x X X

a A ε > b a

x X x X c b.

a A ε > b a

x X q X .

X

A

α A.

k

Y X

Let be a filtering projective system of non-empty

complete metric spaces and assume that has a countable cofinal subset. Assume

that for ,

is uniformly continuous and that for any and any , there is such

that

Then, for any and any , there is such that

In particular, is not empty.

Proof.

By induction, we construct an increasing sequence ( ( )) of such that

( ) ( )

One checks easily that the functor

:

is cofinal.

Let be a subset of a metric space . For any 0, we set

[ ] = : ( )

Let us recall that if : is an uniformly continuous application between

two metric spaces, then for any 0, there is 0 such that

([ ] ) [ ( )]

for any subset of .

( )

:

0

( ) [ ( )]

0

( ) (lim )

lim

We will decompose the proof in two steps.

(i) First, let us show that it is sufficient to prove the result for = .

By the preceding lemma, there is a cofinal functor

:

For any , set

=
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′
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≤

≤
−→

∈ ≥

⊂ ∀ ≥
−→ ∈ ≥

≥

◦ ⊂

≥ ≥ ≥

⊂ ⊂ ⊂

←− ←−

←− −→

∈ ∈
≥

−→

←− ⊂ ◦ ←−

≥

⊂ ←−

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( )

( ) ( ) ( ) ( )

k l

y x .

Y , y X , x

Y , y

k l

y x X X

k ε > b α k

x X x X c b.

α A l α l b

α l α k

y Y x x X x X .

m l α m α l b

y Y x X x X y Y .

Y X

α

Y X

q Y Y

q

a A ε > α k

α k a

x X X

η >

x q X x q X .

l k

y Y q Y .

k,l α k ,α l

k k,l k a a,b a A

k k,l k

k,l α k ,α l α l α k

α k ,b b α k ,c c ε

k,l l α k ,b b,α l α l α k ,b b

k,l l α k ,b b α k ,α m α m ε k,m m ε

k

k

a A

a

k
k

k k

α k

a,α k α k a

a,α k α k
a A

a

η

a,α k α k
a A

a

ε

k,l l k
k

k

η

and for , set

=

(a) Let us prove that ( ) satisfies the same conditions as ( ) .

Of course, ( ) is a filtering countable projective system of complete metric

spaces and for ,

= :

is uniformly continuous. Now, consider and 0. There is ( ) such

that

( ) ( )

Since the functor : is cofinal, there is such that ( ) . Hence,

( ) ( ) and we have

( ) = ( ) ( )

If , then ( ) ( ) and we get

( ) ( ) ( ) [ ( )]

(b) Now, let us show that if the result is true for , then it is for .

Remark that since is cofinal, we may assume that

lim = lim

and that the canonical morphism

: lim

is .

Consider and 0. The functor being cofinal, there is such that

( ) . Since the application

:

is uniformly continuous, there is 0 such that

( (lim ) ) ( )(lim )

Thanks to our assumption, there is such that

( ) (lim )
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−

−

− −

− −
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k k k k k

l k l k

k k k k k

l k k l

l k l k

l k l k

k k

k k

( ) ( ) ( )

0 0

+1

0 0 1 0

1

1

1
1

0

+1

+1 +1

+1

1

+1

+1
1

+1

+1

+1 +1

0 1 1 0 0

0 1 1 0

0 1 0 1

+1 +1

+1 +1

+1 +1

+1 +1

0

+1

+1

≥ ≥

⊂ ←−

∈

⊂ ∀ ≥

≤ ⇒ ≤ ∀ ≤

⊂ ∀ ≥

−→

≤ ⇒ ≤

≤

⊂ ∀ ≥

−→

≤ ⇒ ≤

{ }

≤ ⇒ ≤ ∀ ≤
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a,α l α l a,α k k,l l a

a A

a

ε.

k k

k k

n ,n n n ,n n ε k

k n ,n n ,n
l k

l

n ,n n n ,n n ε

n ,n n n

n ,n n ,n

i i k

k k k

n ,n n n ,n n ε k

n ,n n n

l

l n ,n n ,n
l k

l

k l

k n ,n n ,n
l k

l

k k k k

k n ,n k

k n ,n k k

α l α k a

x X x y Y q X

A

n ε > n n ε < ε/

n

ε

x X x X n n

d u, v ε d x u , x v ε l k.

n ε n > n

x X x X n n

x X X ε >

d u, v ε d x u , x v ε .

n ε i k n

ε n > n

x X x X n n .

l < k x X X

η >

d u, v η d x u , x v ε .

ε η l < k

d u, v ε d x u , x v ε l k .

u v

u x v

d u , x u < ε .

Hence, ( ) ( ) and we get

( ) = ( ( )) (lim )

(ii) Next, let us prove the result for = .

Consider and 0. Set = and choose 2.

(a) By induction, let us construct a strictly increasing sequence ( ) of natural

numbers and a decreasing sequence ( ) of strictly positive reals which converges

to zero in such a way that

( ) [ ( )]

and

( ) = ( ( ) ( )) 2

We have and . By hypothesis, there is such that

( ) [ ( )]

and since : is uniformly continuous, there is 0 such that

( ) = ( ( ) ( )) 2

Suppose that we have constructed and for and let us construct and

. We know that there is such that

( ) [ ( )]

For + 1, the application : being uniformly continuous,

there is 0 such that

( ) = ( ( ) ( )) 2

If we set = inf : + 1 , then

( ) = ( ( ) ( )) 2 + 1

(b) By induction, let us construct two sequences ( ) and ( ) such that

= ( )

and

( ( ))
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k k

k k k k k k
k

k

k k

k k

k k k k

l k

l k l k l k l k k k

k k

0

0 1 1

1 2

0 2

0 2 0

1 2

0 1 0 2 0

0 1 +1

+1 +2

+1

+2

+2

+1 +2

+1 +2

+1 +1 +1

+1

0 1 1

0 1 1

0 1 1 0 2 2 0

0 2 2 0 2

0 2

1 2

0 1 0 2

+1

+1 +1 +2 +2

+2

+2

+1 +2

+1 +2

+1 +1

+1

n ,n n

n ,n n

n ,n n n ,n n ε

n ,n n ε n

n ,n

n ,n

n ,n n ,n

k k

k k

k n ,n k

n ,n n n ,n n ε

k n

k n ,n k k

k n ,n k

k n ,n k k n ,n k k

l
k n ,n k

l
k

l
k n ,n k n ,n k n ,n k n ,n n ,n k

k n ,n k k

u x X .

u x v , v X .

u v

x X x X .

u x X v X

d u , x v < ε .

u x v

d u , x u d u , x v < ε .

u , , u v , , v

u v

u x v

x X x X .

v X

d u , x v < ε .

u x v

d u , x u d u , x v < ε .

l k l

w x u .

d w , w d x u , x u d x u , x x u .

d u , x u < ε

First, choose

( )

Hence,

= ( )

Next, construct and . By (ii)(a),

( ) [ ( )]

So, [ ( )] and there is such that

( ( ))

Set = ( ). Then, we have

( ( )) = ( ( ))

Finally, assume that we have constructed and and let

us construct and . We know that

= ( )

and that

( ) ( )

Then, there is such that

( ( ))

If we set = ( ), then

( ( )) = ( ( ))

(c) Fix . For , set

= ( )

We get

( ) = ( ( ) ( )) = ( ( ) ( ( )))

By (ii)(b),

( ( ))



N

27

N

N

N

N N

N

N

N

∑ ∑

∑
∑

[ ]

[ ]

l l

l l l l l k

l

l

l

+1 +1

0 0

0

0

0 1 1

0 1 1 0

−

− −
−

≥

∞ ∞

∈
∈

∈

∈

∼

∈
′

∈

′

−
−

∞
−

′

∈

∈

≤
≥

≤ ≤

−→ −→
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∈

≥

≤

≤

∈ ←−

⊂ ←−

+1

1

=

+1

1

=

+1

+

+1

+

1

=

0
0

0

=0

0 0

0
0 0 0

0
0
0

0

0

0
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d w ,w ε .

q > p l

d w , w d w ,w ε .

w X X

w

x w x w x u w .

w X n

l n

X X .

w w l

w q w .

q > p l

d w , w ε ,

d w , w ε ε < ε.

w x u u

d u , q w d w ,w < ε.

u q X .

u x X

x X q X .

l
k

l
k

l k
l

l
p

l
q

q

k p

l
k

l
k

q

k p

l k
l

l
k k l n n

l

n ,n
l

k
n ,n

l
k

k
n ,n k

l

l
l

l

n l l

l

l

n

n

n

l
l

l
n

l
p

l
q

q

k p

l k
l

k

k

n ,n

n

n

n

n

ε

n ,n n

n ,n n n

n

n

ε

and by (ii)(a),

( ) 2

So, for , we have

( ) ( ) 2

Hence, ( ) is a Cauchy sequence in and since is complete, this sequence

converges. Denote its limit. We get successively

( ) = lim ( ) = lim ( ) =

It follows that ( ) lim . Since the sequence ( ) is strictly increasing,

the map

is cofinal and

lim lim

Denote by the image of ( ) by this isomorphism. For any ,

= ( )

Since for ,

( ) 2

we have

( ) 2 = 2

Since = ( ) = , we obtain

( ( )) = ( )

It follows that

(lim )

Since is an arbitrary element of ( ), we have

( ) (lim )
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Remark 4.4.

Lemma 4.5.

n,n n n

n

n

ε

V

u v

a

a

a,b b a,c c

topological abelian group metrizable

≥

⊂ ←−

V

{ }

‖·‖ −→ ∞

‖− ‖ ‖ ‖
‖ ‖ ≤ ‖ ‖ ‖ ‖
‖ ‖ ⇒
{ { ∈ ‖ ‖ } }

‖ − ‖

‖·‖ −→ ∞

‖ ‖ ∀ ∈

−→ −→ −→ −→

∈
≥

⊂ ∀ ≥

n n n n

x X q X .

M

V ,

M ,

x x ,

x y x y ,

x x ,

B ε x M x < ε ε > .

M

d x, y x y .

M ,

m d m, m M.

X Y Z

A A

a A X

V X b a

x X V x X c b.

Let

be an exact sequence of filtering projective systems of topological abelian groups

indexed by . Assume that has a countable cofinal subset. Assume moreover

that for any , is metrizable and complete and that for any neighborhood

of zero in , there is such that

Recall that = . Hence, we have found such that

( ) (lim )

Recall that a is if its topology

may be defined by a metric and that the following conditions are equivalent:

(a) is metrizable,

(b) there is a countable basis of neighborhoods of zero such that

= 0

(c) there is an application : [0 + [ such that

(1) =

(2) + +

(3) = 0 = = 0

(4) ( ) = : : 0 is a basis of neighborhoods of zero

Note that in case (c), the metric of can be defined by

( ) =

Conversely, in case (a), the application : [0 + [ can be defined by

= ( 0)

Of course, a metrizable topological abelian group is separated.

0 0

( ) + ( )
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lim lim

0

0

0 0

0

0 0 0

0 0

Then, the sequence

is exact in .

Proof.

Derived Projective Limits of Topological Abelian Groups

−→ ←− −−−→ ←− −−−→ ←− −→

A

←−

←− ←− −→←−

∈ ←− ∈

{ ∈ }

6 ∅ ∈

−→

∈

∈

− − −

∈

−

≥

− − − −

∈

−

≥

−→

X Y Z

b

v Y Z

z z Z a A

M m Y v m z .

v M m M

f X M

f x u x m , x X

f m M

v m m v m v m z z

u v x X

u x m m .

m f x f

b a

v y m m z v m z z z z z z .

x X

u x y m m .

b a

x X X

a A

a

u

a A

a

v

a A

a

a A

a A

a

a A

a

a A

a

a a A

a A

a

a a a a a a

a a a a

a a a

a a a a a a a

a a a

a a a a a a a a a

a a a a

a a a a

a a a a

a a,b b a a,b b b a a,b b a a a

b
a a

a
b
a a,b b a

a,b b a

0 lim lim lim 0

Since the functor lim is left exact, it is sufficient to show that

lim : lim lim

is surjective.

Consider = ( ) lim . For any , set

= : ( ) =

Since is surjective, = . Choose and let us prove that the application

:

defined by

( ) = ( ) +

is bijective. Of course, is injective. Consider . Since

( ) = ( ) ( ) = = 0

and since im = ker , there is such that

( ) =

Therefore, = ( ) and is surjective.

For , we have

( ( ) ) = ( ( )) = ( ) = = 0

So, there is a unique such that

( ) = ( )

For , consider the application

:
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∈

≥ ≥

◦ ◦ ◦ ◦

‖·‖ −→ ∞

∈

{ ∈ ‖ ‖ }

≥

⊂ ≥

≥ ∈

◦

x x x x x , x X .

X M

X M

c b a

x x f y y f x .

x x x

X , x

X

X ,

a A ε >

B ε x X x < ε

X b a

x X B ε x X c b.

c b x X

x x x x x x x

x x x x x x

x x x x x

x x x x x .

x x x

x x x x .

a,b b a,b b
b
a b b

b
f

x

b

y

a f a

a,b b,c a a,b b,c c a,c

a,b a,b a,b

a a,b a A

a

a a

a a

a

a,b b a,c c

c c

a,b b,c c a,b b,c c
c
b

a,b b,c c a,b
c
b

b
a

a,c c a,b
c
b

b
a

a,c c a,c c
c
a

a,b b,c a,c

a,b
c
b

b
a

c
a

defined by

( ) = ( ) +

The diagram

is clearly commutative. Therefore, for , we have

= =

Since is additive and continuous, is uniformly continuous. Hence, is

also uniformly continuous and we may consider ( ) as a filtering projective

system of complete metric spaces. We may also assume that the metric of is

associated to an application

: [0 + [

satisfying the conditions in part (c) of Remark 4.4.

Now, consider and 0. We know that

( ) = :

is a neighborhood of zero in . By hypothesis, there is such that

( ) ( ) + ( )

Remark that for and for any , we have

( ( )) = ( ( ) + )

= ( ( )) + ( ) +

= ( ) + ( ) +

and

( ) = ( ) +

Since = , we get

( ) + =
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c b

x X x X x

x X x x x

x X x

B ε x X x

B ε x X .

x X x X c b.

X , x

b a

X M

X M

a A f

M , y

M .

m m M

v m v m z z.

X , x

A a A

X X , x

a A V X b a

x X V x X c b.

a,b b a,b b
b
a

a,b b a,b
c
b

b
a

a,b b
c
a

a,c c
c
a

a,c c

a,b b a,c c ε

a a,b a A

b
f

x

b

y

a f a

a

a a,b a A

a A

a

a a A

a A

a

a A

a a a a A a a A

a a,b a A

a a a,b a A

a A

a

a,b b a,c c

Let be a filtering projective system of topological abe-

lian groups. Assume that has a countable cofinal subset and that for any ,

is metrizable and complete. Then, is -acyclic if and only if for

any and any neighborhood of zero in , there is such that

Then, for , we have successively

( ) = ( ) +

= ( ) + ( ) +

= ( ) +

( ) + ( ) +

( ) + ( )

It follows that

( ) ( )

Hence, the projective system

( )

satisfies the conditions of Proposition 4.3. Since for , the diagram

commutes and since for any , is bijective, we may turn

( )

into a projective system of complete non-empty metric spaces which satisfies the

same conditions. Therefore,

lim =

Then, there is = ( ) lim and we have

(lim )( ) = ( ( )) = ( ) =

( )

( ) lim

( ) + ( )
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Proof.

a A
a

a A
a

0

lim lim

1

∈

∈

←−

∈
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∈

∈

∈
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The condition is sufficient. ≤

←− ≥

−→

−→ −→ −→ −→

−→←− −−−→ ←− −−−→ ←− −→ ←− −→

LH TA
←−

≥
∈ ≥

⊂ ∀ ≥

⊂ ∀ ≥

∈ ≥

⊂ ←−

∈
⊃ ≥

⊂ ←−

⊂ ←− ⊂ ←−

k

a A

a

e q

a A

a

e

a A

a

q

a A

a

a A

a

a A

a

a,b

a,b b a,c c

a,b b a,c c ε

a,b b a

a A

a

ε

a

a,b b a

a A

a

ε

a,b b a

a A

a a

a A

a

A ω

LH X k .

e X X .

Z, q e

X X Z

X X Z LH X

b

f q .

f f

b a x

a A ε > b a

x X B ε x X c b.

x X x X c b.

a A ε > b a

x X q X .

a A V X ε >

V B ε b a

x X q X .

x X B ε q X V q X

It is clear that cf( ) . Hence, by Theo-

rem 2.10,

(R lim ) = 0 2

Moreover, there is a strict monomorphism

: Π(O( ))

If ( ) is the cokernel of , the sequence

0 Π(O( )) 0

is strictly exact and it gives rise to the long exact sequence

0 lim lim(Π(O( ))) lim (R lim ) 0 (*)

of ( ). Set

= lim

By Proposition 4.5, is surjective. Now, let us show that is strict.

For , since is additive and continuous, it is uniformly continuous.

Consider and 0. By hypothesis, there is such that

( ) ( ) + ( )

It follows that

( ) [ ( )]

Therefore, by Proposition 4.3, for any and any 0, there is such that

( ) (lim )

Consider and a neighborhood of zero in . There is 0 such that

( ). By what precedes, there is such that

( ) (lim )

Therefore,

( ) ( ) + (lim ) + (lim )
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a,c c a,b b,c c a,b b a

a A

a

a A

a

f

a A

a

a A

a

a A

a

a A

a

k

a A

a

a a,b a A

a A

a A

a

a

a,c c a

a A

a

≥

⊂ ⊂ ←−

←− ∈ TA

TA −→ LH TA
LH TA

−→ −→←− −→

←−

'

' '
LH TA

' ←−

∈ TA

' ←− '

←− ' ∀ ≥

←−

←− ' ∈ TA

∈
≥

⊂ ←− ∀ ≥

c b

x X x x X x X V q X .

LH X b.

J b b

J f b

f Z

Z f

f f .

f f f f .

b

J f LH X .

J f b f f

f

J f LH X

LH X k .

X , x

LH X b.

a A V X

b a

x X V q X c b.

and for ,

( ) = ( ( )) ( ) + (lim )

Then, by Theorem 3.4,

(R lim )

Let

: ( )

be the canonical functor. We know that the cokernel of ( ) in ( ) is given

by the complex

0 coim lim 0

where lim is in degree 0. Moreover, is monomorphic and

coker coker

Hence, we get

coim coim and im im

Since the sequence (*) is exact in ( ), we have

coker( ( )) (R lim )

Therefore, coker ( ) . Then, is strict and it follows that so is .

Finally, since is a strict epimorphism, we obtain

coker( ( )) (R lim ) 0

and

(R lim ) 0 1

Since ( ) is lim-acyclic,

(R lim ) 0

Then, by Theorem 3.4, for any and any neighborhood of zero in , there

is such that

( ) + (lim )
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In particular,
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Since, for , = , we have
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