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Abstract

In this paper, we prove that the category ZAb of topological abelian groups
is quasi-abelian. Using results about derived projective limits in quasi-abelian
categories, we study exactness properties of the projective limit functor in ZAb.
If X is a projective system of ZAb indexed by a filtering ordered set, we give
a necessary and sufficient condition for the derived projective limit of X to
be strict. We also characterize the countable projective systems of complete
metrizable abelian groups which are lim-acyclic in ZAb.
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0 Introduction

In this paper, we prove that the category ZAb of topological abelian groups is quasi-
abelian in the sense of [6] (see also [4]). This allows us to use the results about
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derived projective limits in quasi-abelian categories obtained in [5] to study exact-
ness properties of the projective limit functor for topological abelian groups. In
particular, if X is a projective system of ZAb indexed by a filtering ordered set I,
we give a necessary and sufficient condition for the complex

R lim X;
iel
to be strict. When we assume moreover that I is countable and each X is metrizable
and complete, we also give a necessary and sufficient acyclicity condition. This last
result is related to theorems of Palamodov (cf. [2, 3]).

In the first section, we recall the definition of the category ZAb of topological
abelian groups and the form of kernels and cokernels in this category. This allows
us to characterize the strict morphisms of ZAb and to establish that this category is
quasi-abelian.

The first part of Section 2 is devoted to a review of some of the results on derived
projective limits in quasi-abelian categories established in [5]. More precisely, we
recall that if £ is a quasi-abelian category with exact products, the projective limit
functor is right derivable and that its derived functor is computable by means of
Roos complexes. We also recall that if J : J — 7 is a cofinal functor between
small filtering categories and if E is a projective system indexed by Z, then the
derived projective limits of £ and Fo.J are isomorphic. In order to be able to apply
these results to ZAb, we end this section by showing that products are exact in this
category.

In the third section, we study strictness properties of the derived projective limit
functor in ZAb. We establish that if X is a projective system of ZAb indexed by a
filtering ordered set, the differential d* of its Roos complex is strict for k& > 1 and
that d° is strict if and only if X satisfies condition SC (i.e. if and only if for any
1 € I and any neighborhood U of zero in X;, there is j > ¢ such that

i (Xk) C qi(lim X;) + U
iel

for any £ > j). As a corollary, we get that a projective system of ZAb indexed
by a filtering ordered set is lim-acyclic in ZAb if and only if it is lim-acyclic in the
category of abelian groups and satisfies condition SC.

In the last section, we limit our study to countable projective systems of ZAb.
First, we establish a slight generalization of the classical Mittag-Lefller theorem for
countable projective limits of complete metric spaces. Using this result and results
of Section 3, we give a necessary and sufficient condition for a countable projective
system of complete metrizable abelian groups to be lim-acyclic in ZAb.
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To conclude this introduction, I want to thank J.-P. Schneiders for pointing out
the research direction followed in this paper and for the useful discussions we had
during its preparation.

1 The category 7Ab of topological abelian groups

In this paper, by a topological abelian group, we mean an abelian group M endowed
with a topology such that the applications

+ MxM—M

and
— M —- M

are continuous.
Recall (see e.g. [1]) that if M is a topological abelian group, then there is a basis
of neighborhoods of zero V such that

TAbLl) VV €V, V 30,

TAB2) YV €V, V = -V,
TAbB3) VY Vi, Vo €V, 3 V4 € V such that Vi NV, D V4,

(
(
(
(TAb4

)
)
)
) VV €V, 3U € Vsuchthat U+ U C V.

Conversely, let V be a set of subsets of an abelian group M satisfying (TAbl)—
(TAb4). Then, the collection 7 of subsets U of M such that

VeeU, JdV eVsuchthat x+V CU

is a topology of abelian group on M for which V is a basis of neighborhoods of zero.
Let M be a topological abelian group, let N be a subgroup of M and let V be a
basis of neighborhoods of zero on M. The set

V ={VAN:V eV}

is clearly a basis of neighborhoods of zero for a topology of abelian group on N. We
call the topology so defined on N the induced topology.
Similarly, if ¢ : M — M /N denotes the canonical morphism, the set

V= {q(V):V eV}

forms a basis of neighborhoods of zero for a topology of abelian group on M/N.
The topology so defined on M/N is called the quotient topology.
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Definition 1.1. We denote by ZAb the category whose objects are the topological
abelian groups and whose morphisms are the continuous additive maps.

Proposition 1.2. The category TAb has products. More precisely, let (My)aca be
a family of topological abelian groups and let V,, be a basis of neighborhoods of zero
on M, (Yo € A). Then, the product of the family (My)aca in TAb is obtained by

endowing the abelian group

HMQ:{(ma)aeA:maeMa Vae A}

acA

with the topology associated to the basis of neighborhoods of zero

V:{HVQ:VQ:MQ or Vo € V,, {a:V, # M,} is finite }.

acA
Corollary 1.3. The category TAb is additive.

Proposition 1.4. The category TAb has kernels and cokernels. More precisely, let
u: M — N be a morphism of TAb.

(i) The subgroup u='({0}) of M endowed with the induced topology together
with the canonical monomorphism i : u=*({0}) — M form a kernel of u.

(ii) The quotient group N/u(M) endowed with the quotient topology together
with the canonical epimorphism q : N — N/u(M) form a cokernel of u.

(iii) The image of u is the subgroup u(M) of N endowed with the induced

topology.
(iv) The coimage of u is the quotient group M/u~'({0}) endowed with the quo-
tient topology.

Proof. (i) Let X be an object of ZAb and let v : X — M be a morphism of ZAb
such that u o v = 0. Since v(X) C u~'({0}), the application

v X — ut({0}) x — v(x)
is well-defined. One sees easily that v’ is additive, continuous and makes the diagram

u oY) M-t N

NA

X

commutative. Since v’ is the unique application satisfying these properties,

(u™'({0}), 1)
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is a kernel of w.
(ii) Let X be an object of ZAb and let v : N — X be a morphism of ZAb such
that v ou = 0. The application

v N/u(M) — X (7] uary = v (1)

is well-defined and additive. Let us show that v is continuous. Consider a neigh-
borhood of zero V in X. Since v™*(V) is a neighborhood of zero in N, ¢(v=*(V)) is
a neighborhood of zero in N/u(M). Moreover, we have

V) D qlg T (0T V)) = al(v o q)TH(V)) = (v (V).

It follows that v~ (V) is a neighborhood of zero in N/u(M) and that v’ is continuous.
Of course, v' makes the diagram

M~ N —" N/u(M)

RN

X

commutative. Since v’ is the unique application having these properties,

(N/u(M), q)

is a cokernel of w.
(ili) and (iv) follow from (i) and (ii). O

Proposition 1.5. A morphism u : M — N of TAb is strict if and only if for any
neighborhood of zero V' in M, there is a neighborhood of zero V' in N such that

w(V)Du(M)nV',

Proof. By definition, u : M — N is strict if and only if the canonical morphism
U : coimu — imw is an isomorphism. This canonical morphism

@ M/ut({0}) — u(M)
is defined by
u([m], -1 (10)) = ulm) V'm e M.

One checks easily that u is bijective. Moreover, @ is continuous. Hence, u is strict

1

if and only if 7" is continuous.

So, we have to show that

A ru(M) — M/uTH({0})  u(m) = [m], g0y
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is continuous if and only if for any neighborhood of zero V' in M, there is a neigh-
borhood of zero V' in N such that

w(V)Du(M)nV',

The condition is necessary. As a matter of fact, let V' be a neighborhood of zero
in M. If ¢ : M — M/u~'({0}) is the canonical morphism, ¢’(V') is a neighborhood
of zero in M/u~'({0}). Since @' is continuous,

(@) (d (V) =g (V) = u(V)

is a neighborhood of zero in u(M). Hence, there is a neighborhood of zero V' in N
such that
w(V) D V' Nnu(M).

The condition is also sufficient. Let W be a neighborhood of zero in M /u=*({0}).
There is a neighborhood of zero V' in M such that W D ¢/(V'). By hypothesis, there
is a neighborhood of zero V/ in N such that

uw(V) Du(M)nV'.
Therefore, we have
(@ H W) =a(W) D> a(d' (V) =u(V) Du(M)NV’,

Since u(M) N'V" is a neighborhood of zero in w(M), (a—')~'(W) is a neighborhood

1is continuous. ]

of zero in w(M). Hence, 4~
Proposition 1.6. The category TAb is quasi-abelian.

Proof. We know that 7Ab is additive and has kernels and cokernels.
(i) Consider a cartesian square

My —— Ny

1] E

MlT>N1

where u is a strict epimorphism and let us show that v is a strict epimorphism.
Recall that if we set
a = (U —g) IM()@Nl —>N0,

then we may assume that

My =kera = {(mg,n1) : u(mo) = g(n1)}
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and that
f=pm, 0% and v =pp, 0i,

where 1, : kerao — My & N; is the canonical monomorphism.
Of course, the morphism v is surjective. Let us prove that it is strict. Consider
a neighborhood of zero V' in M; = ker . We may assume that

V =(VoxV/)Nkera

where Vj is a neighborhood of zero in My and V] is a neighborhood of zero in NV;.
Since wu is strict, by Proposition 1.5, there is a neighborhood of zero V{ in Ny such
that

w(Vo) D u(My) N'Vj.

Then, V/ N g~'(Vj) is a neighborhood of zero in N;. Since
v(V) Do(My) NV Ng V),

by Proposition 1.5, v is strict.
(ii) Consider a cocartesian square

My, —— N,
ho
MO T>N0

where u is a strict monomorphism. Let us show that v is a strict monomorphism.
Recall that if we set

Od:(f) IM0—>M1@N0,
then we may assume that
N; = cokerav = (M; & Ny)/a(My),

V= Qo O ln, and g = qa O IN,

where g, : M1 & Nog — (M; & Ny)/a(My) is the canonical epimorphism.

Clearly, the morphism v is injective. Let us prove that it is strict. Consider a
neighborhood of zero V4 in M;. We know that there is a neighborhood of zero U; in
M such that

Ui +U; C W

Since w is strict, there is a neighborhood of zero Vj in Ny such that

u(f~H(U) D u(Mo) NV
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Moreover, q,(U; x Vj) is a neighborhood of zero in Ny = M; & Ny/a(Mjp). One can
check that
v(V1) D v(My) N qa(Up X V).

Hence, v is strict. O

2 General results on derived projective limits in 7A4b

Let £ be a quasi-abelian category and let Z be a small category. Recall that £

denotes the quasi-abelian category of functors from Z° to £ (also called projective
systems of £ indexed by 7). For the reader convenience, we recall how to derive the
projective limit functor

lim : E €

i€T
if £ is a quasi-abelian category with exact products (see [5] for more details).

Note that, hereafter, we will often denote by the same symbol a set and its

associated discrete category.

Definition 2.1. Let 7 be a small category and let £ be a quasi-abelian category
with products. We define the functor

I1: £9°@ —, 77

by setting

1(S)(i) = ] SG)

for any functor S : Ob(Z) — & and for any ¢ € Z. Let i be an object of Z. For any
morphism « : j — i of Z, we denote by

e, TIS)(0) — S()

the canonical projection.
A projective system
E:I% - €&

is of product type if there is an object S of £°*@) such that
E ~TI(S)

in 277,
We denote by
0: &M — @

the canonical functor.



Derived Projective Limits of Topological Abelian Groups 9

Proposition 2.2. Let Z be a small category and let £ be a quasi-abelian category
with products.
(a) For any object S of E°°®) | we have the isomorphism

lim T1(S) (i) ~ [Ts6).

€T €T
(b) For any object E of ET™ | the morphism
f:E—=T(O(F))
defined by
p;e,;© f(i) = E(a)
for any object 1 of T and any morphism « : j — i of T is a strict monomorphism.

Definition 2.3. Let 7 be a small category and let £ be a quasi-abelian category
with products. We define the functor

R(T,"): & — (&)
in the following way. For any functor F : 7°° — &, we set

RYI,E)=0 VYn<0

and
R(Z.E)= ][] EG) V¥n>0o,
iog ﬂ)in
where
ig 5 o 2,

is a chain of morphisms of Z. Denoting by

P on . RY(Z,E) — E(ip)

iO > e >in,

the canonical projection, we define the differential

dp 7. : R"(Z,E) — R"(I,E)

by setting
mn
a o1 odp. =Fla)op o an+1
piO ! - in+1 R(:LE) ( ) pil 25 - in+1

l
+ Z(_l) D e . A141°9 Ut
L A A !

We call R (Z, E) the Roos complex of E.
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Notation 2.4. Let E be an object of £, For any i € Z, we denote by

1€T
the canonical morphism.

Proposition 2.5. Let Z be a small category and let £ be a quasi-abelian category
with products. For any object E of ¥, there is a canonical isomorphism

€'(Z,E) : lim E(i) = ker dy 1

€T

defined by
pioe(IT,E) =g VieT.

Definition 2.6. Let 7 be a small category and let £ be a quasi-abelian category
with products. An object E of £ is a Roos-acyclic projective system if the co-
augmented complex

0 — lim E(i) — R*(Z,E) — R'(Z,E) — ---

€L
is strictly exact.

Proposition 2.7. Let Z be a small category and let £ be a quasi-abelian category
with products. For any object S of EOPD) | there is a canonical homotopy equivalence

[1s6) — R(Z,1(9)).

€T
In particular, I1(S) is a Roos-acyclic projective system.

Proposition 2.8. Let Z be a small category and let £ be a quasi-abelian category
with exact products. Then, the family

F ={E € Ob(EX™) : E is Roos-acyclic}

is lim-injective. In particular, the functor
i€T

. op

lim: EF° — &
nm

icT

is right derivable and for any object E of E¥", we have a canonical isomorphism

Rlim E(i) ~ R (T, E).

i€l
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Proposition 2.9. Let J : J — 7 be a cofinal functor between small filtering
categories and let £ be a quasi-abelian category with exact products. For any
object E of DY (EX"), the canonical morphism

Rlim B(i) — Rlim E(J(5))

1€T JjeJ
is an isomorphism in D" (E).

Recall that if 7 is a small filtering category, there is a small filtering ordered set
I and a cofinal functor ® : I — Z. Since any non empty set of cardinal numbers
has a minimum, we may assume that / has the smallest possible cardinality. We
call this cardinality the cofinality of Z and denote it cf(Z).

Recall also that for k € N, wy, denotes the (k + 1)-th infinite cardinal number.

Theorem 2.10. Let £ be a quasi-abelian category with exact products. Consider
a functor
X:I? —=¢&

where 7 is a small filtering category. If cf(Z) < wy with k € N, then

LH"(RlImX(i)) =0 Vn>k+1.

€T

Since we know already that ZAb is quasi-abelian, the following proposition will
allow us to apply the preceding results to treat derived projective limits of topological
abelian groups.

Proposition 2.11. Products are exact in TAb.
Proof. Let I be a small set. The functor

IT: 74" — 7Ab

el

being kernel preserving, it is sufficient to show that the product of strict epimor-
phisms is a strict epimorphism. Consider a family

U; - A42 ——+<Ah Viel

of strict epimorphisms. Of course, the application

HU’LHM’LHHN’L

iel icl icl
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is surjective. Let us show that it is strict. Consider a neighborhood of zero V' in
[Lic; M;. We may assume that
v=][v

icl
where V; is a neighborhood of zero in M; such that for

i%{il,"',ij}, (JGN)

we have V; = M;. Since for any i € I, u; is strict, there is a neighborhood of zero
V! in N; such that

For i ¢ {i1, --- ,is}, we may assume that V/ = N,;. Hence,
V/ — H ‘/i/
il

is a neighborhood of zero in [, N; and

iel iel iel
By Proposition 1.5, [],., u; is strict. ]
Proposition 2.12. Let 7 be a small category. The functor

lim : TAVY” — TAb
i€T
is right derivable and for any object M of TAV*"", we have
R@M(z) ~ R (Z,M)

i€l

where R (Z, M) is the Roos complex of M.

Proof. This follows from Proposition 2.8. O

3 Strictness properties of derived projective limits in 7Ab

Our aim in this section is to give a condition for the complex

%

iel
to be strict (i.e. to have strict differentials). Thanks to the following lemma, this is
equivalent to give a condition in order that

LHk(R;;LnXi) € TAb.

el
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Lemma 3.1. Let £ be a quasi-abelian category and let

1dk1

X xht A ek ek

be a complex of £. Then,
(a) LH*(X") € € if and only if the differential d*~" is strict;
(b) LH*(X") = 0 if and only if the sequence

Xk—l dk-! Xk d_k>Xk+1
is strictly exact.

Definition 3.2. Let I be a filtering ordered set. We say that a projective system
X € TAb'™ satisfies condition SC if for any ¢ € I and any neighborhood U of zero
in X;, there is j > ¢ such that

iel
Remark 3.3. Let Z be a small category and let F' : Z°°? — TAb be a functor. One

can check easily that lim F'(7) is the abelian group
i€T

{(fi)ieI € HF(Z) : F(Oz)fi/ = fz Va:i— i/ in I}

endowed with the topology induced by that of [[,_, F'(7).
If moreover Z is filtering, then for any neighborhood of zero V' in lim F'(7), there

i€T
is i € 7 and a neighborhood of zero U; in F'(7) such that
V 2 g (Uh).

As a matter of fact, we know that V' contains a neighborhood of the form

(JTw2) nlim F (i)

ieT 1€
where
Wi, - 7Wik (/CEN)
are neighborhoods of zero in F'(iy), --- F\(ix) respectively and W; = F(i) if and
only if ¢ ¢ {iy, --- ,ix}. Hence, we have

HW ﬂhmF ﬂq

€T Z
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Since 7 is filtering, there is ¢ € 7 and there are morphisms
Qi il — 0 =1, --- .k

of Z. Since

is continuous,

is a neighborhood of zero in F'(i) and we see easily that
qz_l(UZ) cV.

Theorem 3.4. Let I be a filtering ordered set and let X be an object of TAb'™.
Then,
LH*(RIli
1€
if and only if X satisfies condition SC.
In particular, the differential d%. (1,X) of the Roos complex of X is strict if and
only if X satisfies condition SC.

afi=

Proof. (a) Let us prove that the condition is sufficient.
We will decompose the argument in two steps.
(i) First, let us show that it is sufficient to prove that if

0-X3Y 570
is a strictly exact sequence of ZAb'™", then lim v; is a strict morphism.
Let X be an object of ZAb'™. We knowfliat there is a strict monomorphism
e: X — I(O(X)).
If (Z,q) is the cokernel of e, then the sequence

0— X SIOX)) L Z—0

is strictly exact and it gives rise to the long exact sequence

yilei lﬂl%
0 — lim X, =, lim TI(O(X)) (i) “—lmZ — LH'(RlImX;) — 0 (%)

~
~

1€ 1€ i€l i€l
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of LH(ZAb) since II(O(X)) is lim-acyclic. Set

el

and let
J : TAb — LH(TAD)

be the canonical functor. Since f is strict, the sequence
lim I(O(X)) (i) £ lim Z, — coker f — 0
iel iel
is strictly exact in ZAb. Hence, it gives rise to an exact sequence in LH(ZAD).
Therefore,
J(coker f) ~ coker(J(f))
~ LH"(Rlim X;)
S

el

since the sequence (*) is exact and we have

LH'(Rlim X;) € TAb.

el

(ii) Let us prove that if
0—-X3Y 5272 -0

is a strictly exact sequence of ZAb'™ such that X satisfies condition SC, then lim v;
iel

is strict. For this, it sufficient to show that for any neighborhood of zero V' in lim Y;,
iel

there is a neighborhood of zero V' in lim Z; such that

iel
(limv;) (V) D (lim v;)(lim ¥;) N V7.
iel iel el

Let V' be a neighborhood of zero in lim ;. By Remark 3.3, V' contains a neigh-
iel

q; ' (U;)

where U; is a neighborhood of zero in Y; for some ¢ € I.

borhood of the form

Consequently, it is sufficient to show that for any ¢ € I and for any neighborhood
of zero V; in Y; there is a neighborhood of zero V' in lim Z; such that
icl
(tim ) (g™ (V) > (lim v,) (fm ¥;) N V.

el el el
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Let ¢ € I and let V; be a neighborhood of zero in Y;. There is a neighborhood of
zero V/ in Y; such that V/ +V/ C Vi. Set U/ = u;'(V/). By hypothesis, there is
7 > 1 such that
il
If we set V/ = y; jl(Vi’ ), since v; is strict, there is a neighborhood of zero W; in Z;
such that
v;(Y;) N W5 € (V).

Since v; is an epimorphism, we get
!
VVJ‘ C ’Uj(‘/j )
Moreover, since ¢; is continuous, qj_l(W'J) is a neighborhood of zero in lim Z;. To

el
conclude, let us show that

(lim o) (lim ¥;) 1g; " (W) € () (g, (Vi)

p iy %
icl icl icl
Consider
v € (limv;)(im Y) N g5 (W)
icl icl
Hence,

qj(v) € W;

and there is § € limY; such that
iel

It follows that

and since
W; C v (V)),
there is 8 € V} such that
vi(g;(3)) = v;(8;).
Hence, we have
q;(B) — ﬁ; € kerv; = imu;
and there is o; € X; such that
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Remark that
4(8) = vi;(B) = 6:(B) — v, (0;(B) — u;(e))) = (ui o @ 5) ().
Now, thanks to the relation

2i5(X;) C qi(lim X;) 4 U},
el

there is o' € lim X; such that
iel
() — ;o) € U

(2

Then, we have successively

¢i(B—(limw;) () = yi;(8) tui(wi () —ui(g(a') = yii(B)) +ui(wij(a;)—gq(a’)).

iel
Since
vii(3;) € yi;(V)) C V/
and
ui(zi () — gi(a')) € wi(U7) C V7,
we get

Moreover, since
we have

and the sufficiency of the condition is established.
(b) Let us prove the necessity of the condition. Let i be an element of I and let
U be a neighborhood of zero in Xj.
We know that
Rlim X; ~ R'(I, X).

el
Since
LH'(Rlim X;) € TAb,
iel
by Lemma 3.1,
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is a strict morphism. Therefore, there is a finite family of pairs (jk, ix)kex such that
w<in Vkek

and there are neighborhoods of zero Vj, ;, in X, such that

kol

R (I,X) HX m pj_klzk(vjm) - d(J)%(I,X)(pi_l(U))- (*)

el keK
Since [ is filtering, there is m € [ such that
1<m, i <m, Jjp<m VEkeK.
Consider n > m and (3, € X,,. If we set

5 {xl,n(ﬂn) if 1<n
) =

0 otherwise
then 3 = (61)ier € [[;c; Xi and for any k € K, we get

Djjyir © d(l)%'(I,X)(ﬁ) = Ljy iy, © Diy, (ﬂ) — Pjy, (ﬁ) =0.
It follows that

R(IX ﬂp]kzk isin)
keK

and thanks to the relation (*), there is 3’ € p; ' (U) such that
dR (I, X)(ﬂ) = d?%-([,x)(ﬁ/)-

Hence,
B—p ekerdy .
Recall that ker d%.( 1x) = im(e°(1, X)), where ¢°(I, X) denotes the canonical aug-

mentation of the Roos complex. Therefore, there is a € lim X; such that
iel

B0 = X) ().
Since i < n, we have
Tin(Bn) = 0i(B) = B = pi(B) = pi(B = ') = (pi 0 (1, X))(a) = @i(0).
Consequently,
Tin(Bn) = pi(B) + ¢i(a)
and since p;(3') € U, we see that

el

The conclusion follows easily. H
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Theorem 3.5. Let I be a filtering ordered set and let X be an object of TAb'™.
Then,
LH*(Rlm X;) € TAb V& >2.
icl

In particular, the differential d’j{.( 1.X) of the Roos complex of X is strict for k > 1.

Proof. We will decompose the argument in three steps.
(a) First, let us show that for any functor S : Ob(I) — ZAb, the functor

I(S) : I — TAb
verifies the condition SC. Consider ¢ € I and U a neighborhood of zero in

11(S)(i) = Hsl.
If £ > 4, the morphism
pik : 1(S) (k) — IL(S)(¢)

is the canonical projection. Moreover, we know that

lim 11(5) () ~ [] 5.
i€l iel
and that
gi - im I1(S)(7) — TI(S9)(3)
icl

is the canonical projection. It follows that

pix(I1(S)(k)) = ¢:(Lim I1(S)(¢)) C ¢:(Lim 11(S)(2)) + U.
iel iel
(b) Next, consider an epimorphism f : X — Y of ZAb!™. Let us show that if X
verifies the condition SC, then Y verifies the condition SC. Let ¢ € I and let V' be a
neighborhood of zero in Y;. Since f; (V) is a neighborhood of zero in X;, there is
7 > 1 such that
ik (Xi) C qi(lim X;) + f;71(V) Vk>j.

iel

Consider £ > j and yi € Yj. Since fi : X — Y} is surjective, there is z;, € X}, such

that fi(vx) = yx. Then, there are o € lim X; and 3 € f7H(V) such that
iel

zik(zr) = qi(a) + B.
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Therefore, we get successively
Yik (k) = Yir(fr(zr)) = filzir(zr)) = filai(a) + B8) = qZ((lLHfz)(Oé)) + fi(B).
iel
It follows that

Yir(Yi) C qi(limY;) + V.
icl
(c) Finally, let X be an object of ZAb'™. We know that there is a strict monomor-
phism
e: X — T(0(X)

If (Z,q) is the cokernel of e, the sequence
O—)XLH(O(X))LZ—)O
is strictly exact and we get the long exact sequence

oo LH*(R1m II(O(X)) (7)) — LH"(Rlim Z,) *)

el el

L>LH’“+1(R11 X;) —— LH*™ (R 1Im TI(O(X))(i)) ——- -
Since I1(O(X)) is lim-acyclic, we have
icl
LH*RImI(O(X))(#)=0 Vk>1
icl
and then
LH*Rlim Z;) ~ LH*(Rlim X;)  Vk > 1.
— —
i€l i€l
By (a), II(O(X)) verifies the condition SC and by (b), Z verifies the condition SC.
Then, by Theorem 3.4,
LH'(Rlim Z;) € TAb
iel

and the preceding isomorphism shows that

LH?*(Rlim X;) € TAb.

el

Reasoning by induction, we see easily that

LH*RlIm X;) € TAb V& > 2.

i€l
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Finally, since
LH*(Rlim X;) ~ LH*(R (I, X)) € TAb ~ Vk>2,
iel
Lemma 3.1 shows that dlf{-([,x) is strict for k£ > 1. [
Corollary 3.6. Let ® : ZAb — Ab be the forgetful functor which associates to any

object X of TAb, the abelian group X. Let I be a filtering ordered set. If X is an
object of TAb'™", then the following conditions are equivalent:

= —
il il
(ii) lim ®(X;) ~ Rlim ®(X;) and X satisfies condition SC.

iel iel

Proof. (i) = (ii). Since lim X; ~ Rlim X;, we have
i€l i€l

I

LH*RImX;) =0 Vk>1
el
We know that
Rlim X; ~ R (I, X).
el

Hence, the sequence
RFYI,X) — RF(I,X) — RMY(I, X)

is strictly exact in ZAb for k > 1. Therefore, this sequence is exact in Ab. It follows
that
LH*RIm®(X;)) =0 Vk>1
icl

Moreover, the functor lim : Ab™ — Ab being left exact, we have
iel

and we obtain

Finally,
LH'(Rlim X;) = 0 € TAb

i€l
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and by Theorem 3.4, X verifies the condition SC.
(ii) = (i). By Theorem 3.4 and Theorem 3.5,

LH*Rlm X;) € TAb  VEk>1.

iel
k—1 . . .
Hence, dj, (1.x) 1s strict. Moreover, since

LH’“(R@(I)(Xi)) =0 Vk>1,

el

we have

% . T
ker dR'(I,X) = 1mn dR(lf,X)

in Ab. Therefore, the sequence
RFYI,X) — RF(I,X) — RMY(I, X)
is strictly exact in ZAb for £ > 1 and

LH*RlIm X;) =0  (k>1).

icl
Since
LH°(Rlim X;) ~ lim X;,
iel iel
we obtain

4 An acyclicity condition for projective systems of 7Ab
Lemma 4.1. If A is a countable filtering ordered set, there is a cofinal functor
a:N— A

Proof. Since A is countable, there is a surjection b : N — A. Since A is filtering, we
may find a(1) € A such that
a(l) > b(1).

In the same way, we may find a(2) € A such that

a(2) > b(2), a(2) > a(l).
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By induction, we construct an increasing sequence (a(k))xen of A such that

a(k) > b(k) VkeN
One checks easily that the functor
a:N— A

is cofinal.

Remark 4.2. Let I’ be a subset of a metric space E. For any € > 0, we set

Fl,={r e E:d(z,F) <€}

23

Let us recall that if f : E — F'is an uniformly continuous application between

two metric spaces, then for any € > 0, there is 7 > 0 such that

f(1AL) C (A

for any subset A of E.

Proposition 4.3. Let (X,,Z.p)aca be a filtering projective system of non-empty
complete metric spaces and assume that A has a countable cofinal subset. Assume

that for b > a,
Lapb - Xb — Xa

is uniformly continuous and that for any a € A and any € > 0, there is b > a such

that
Tap(Xp) C [Ta,e(Xe)], Y e >b.

Then, for any a € A and any € > 0, there is b > a such that

a€A

xa,b(Xb> C [qa(liLHX(J] .

In particular, lim X, is not empty.
acA

Proof. We will decompose the proof in two steps.

(i) First, let us show that it is sufficient to prove the result for A = N.

By the preceding lemma, there is a cofinal functor
a:N— A

For any k € N, set
Yi = Xaw)
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and for k£ <[, set
Ykl = Ta(k),a(l)-

(a) Let us prove that (Y, yk)ren satisfies the same conditions as (X,, Tap)aca.
Of course, (Y, yk.1)ren is a filtering countable projective system of complete metric
spaces and for k£ <,

Ykl = Ta(k),all) @ Xal) — Xak)

is uniformly continuous. Now, consider k € N and € > 0. There is b > «(k) such
that
Taw o(Xs) C [Tame(Xe)],  Ve2b.

Since the functor @ : N — A is cofinal, there is [ € N such that «(l) > b. Hence,
a(l) > a(k) and we have

Ykt (Y1) = Zak)p © Toa)(Xaw) C Tamw)s(Xs).

If m > 1, then a(m) > a(l) > b and we get

yk,l(YZ) C xa(k),b(Xb) C [*Z'oz(k),oz(m)(AXvoz(m))}E C [yk,m(Ym)]E .

(b) Now, let us show that if the result is true for Y, then it is for X.
Remark that since « is cofinal, we may assume that
lim Y, = lim X,
= pa—
keN acA
and that the canonical morphism
q lim Y, — Yj
keN

is da(k)-
Consider a € A and € > 0. The functor a being cofinal, there is k& € N such that
a(k) > a. Since the application

Taa(k) Xa(k) — Xa

is uniformly continuous, there is 7 > 0 such that

a€A

Ia,a(m([qa(k)(hﬂ&)l ) C (xa,a(k)oqa(k))(liﬂXa)] :
acA
mn €

Thanks to our assumption, there is [ > k such that

Y1 (Y1) C g, (lim Yy)

keN
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Hence, a(l) > a(k) > a and we get

xa,a(l)(Xa(l)) = xa,a(k) (yk,l(YZ)) C [%(l&n Xa)]

a€A

(ii) Next, let us prove the result for A = N.

Consider n € N and € > 0. Set ng = n and choose ¢, < €/2.

(a) By induction, let us construct a strictly increasing sequence (ng)en of natural
numbers and a decreasing sequence (€)ren of strictly positive reals which converges
to zero in such a way that

Tng npp1 (Xnk+1) C [xnkan(Xn)]ek Vn > Ng+1

and
d(u,v) < e = d(Tpy i, (1), Ty, (V) < 27F¢ Vi<E.

We have ng and ¢y. By hypothesis, there is n; > ng such that
Tng,na (an) C [xn01n(Xn)]5O Vnz>n
and since T, ,, : X, — Xy, is uniformly continuous, there is €; > 0 such that

du,v) < e = d(Tpgny (W), Tpgn, (V) < 27 e,

Suppose that we have constructed n; and ¢; for ¢ < k and let us construct ny,; and
€k+1- We know that there is ngy1 > ny such that
Xnk+1) - [wnk,n(Xn)]gk Vn> Thot1-

xnk sMe+1 (

For [ < k + 1, the application xp, n, ., @ Xn, .,
there is 7; > 0 such that

— X, being uniformly continuous,
d(uvv) S 771 - d(xnl7nk+1(u)7xnl7nk+1 ('U)) S 2l_k_1€l'
If we set €41 = inf{m : | < k + 1}, then
d(u,v) < €1 = d(@nyngys (W) Trgy,, (V) <275 e VI<E+1L
(b) By induction, let us construct two sequences (uy)geny and (vg)ken, such that

Uk = Tnynpqq ('Uk-f-l)

and

d(uk> Tngngia (Uk+1)) < €g.
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First, choose
Uy € Tng.ny (Xny)-

Hence,
Uy = Tpg g (V1), V1 € Xipy»

Next, construct u; and vy. By (ii)(a),

Zng,n1 (Xna) C [T ns (an)]q)'
S0, Uy € [Tngny (X, )], and there is va € X, such that
d(uo, Ty ny (V2)) < €o.

Set U1 = Tpy ny(v2). Then, we have

d(u07 Tng,n1 (Ul)) - d(’do, Tng,na (UQ)) < €o.

Finally, assume that we have constructed ug, --- , ur and vy, ---

us construct ug+q1 and viro. We know that

Uk = Ty npqq (Uk-i-l)

and that
xnkﬂk-&-l (Xnk-H) C ['Tnkunk+2 (Xnk+2 )} €

Then, there is vy € X,,, ., such that

k42

If we set Ury1 = Tny,\ny o (Vk42), then

d(uk‘v T 11 (uk+1)) = d(uk‘v Tng npro (Uk+2)) < €.

(c) Fix l € N. For k > [, set

wi: = Tnyny, (uk‘)

We get

, Ug+1 and let

d(wi:? wi:—&—l) = d(xnlﬂk (uk‘)v Ty g1 (uk+1)) = d<xnlunk (uk‘)v Lny,ny, (I‘nkank-&-l (uk+1)))

By (ii)(b),
d(uk‘v Lrg npg1 (uk+1)) < €k
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and by (ii)(a),
d(wi,wiﬂ) <27

So, for ¢ > p > [, we have

5
L
A
L

d(w;,wé) <Ny d(wh,why) <Y 2R,

P k=p

i

Hence, (w})>; is a Cauchy sequence in X, and since X,,, is complete, this sequence
converges. Denote w! its limit. We get successively

l+1) — l+1) o l

llm 'Z.nlanl-‘rl (wk - llm xnhnk (uk‘) =w.

xnlﬂl-ﬂ (’LU
k—> 400 k—> 400

It follows that (w!)ey € lim X,,. Since the sequence (n)en is strictly increasing,
leN
the map

is cofinal and

Denote by w’ the image of (w');ey by this isomorphism. For any [ € N,

wl = qny (W),

Since for ¢ > p > [,
q—1
d(w;,wé) < ZQl_kel,
k=p
we have .
d(wg, w) < Z?‘keo = 2¢p < €.
k=0
Since W) = Tyy.ne (Uo) = ug, We obtain
d(uoa %zo(wl>> = d(w87w0) <€
It follows that

Uy € [qno(liLan)] .

neN

Since ug is an arbitrary element of x,, ,, (X, ), we have

Tngny (Xny) C

G, (lim Xn)] -

neN
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Recall that ng = n. Hence, we have found n; > n such that

Tnng (Xn,) C [qn(lﬁan)] .

neN

[

Remark 4.4. Recall that a topological abelian group is metrizable if its topology
may be defined by a metric and that the following conditions are equivalent:

(a) M is metrizable,

(b) there is a countable basis of neighborhoods of zero V such that

v ={o},

Vey
(¢) there is an application ||| : M — [0, +oo[ such that
() [l=zll = ll=Il,
@) [lz+yll < llzll +llyll,
3) [zl =0 = = =0,
(4)

4){B(e) ={z € M : ||z|| < €} : € > 0} is a basis of neighborhoods of zero.

Note that in case (c), the metric of M can be defined by
d(z,y) = [l -yl
Conversely, in case (a), the application ||| : M — [0, +oco[ can be defined by
lm|| = d(m,0) V'm € M.

Of course, a metrizable topological abelian group is separated.

Lemma 4.5. Let
0—-X32Y 2LZ -0

be an exact sequence of filtering projective systems of topological abelian groups
indexed by A. Assume that A has a countable cofinal subset. Assume moreover
that for any a € A, X, is metrizable and complete and that for any neighborhood
of zero V' in X,, there is b > a such that

«Ta,b(Xb) cV+ .Tmc(Xc) Ve>b.
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Then, the sequence

lim uq lim g
. acA . acA .
0—limX, —— limY, ——1lim~Z, — 0
— — —
acA acA acA

is exact in Ab.

Proof. Since the functor lim is left exact, it is sufficient to show that

a€A
limv, : limY, — lim Z,
a€eA a€A a€A

is surjective.

Consider z = (24)qea € lim Z,. For any a € A, set
acA

M, ={m, € Ya : va(ma) = 2.}
Since v, is surjective, M, # (). Choose m? € M, and let us prove that the application
Ja: Xa — M,
defined by
fa(¥a) = wa(xa) +mg, x4 € X,
is bijective. Of course, f, is injective. Consider m, € M,. Since

Va(mg — mg) = Ug(Mg) — va(mg) = 24— 24 =0

and since im u, = kerwv,, there is z, € X, such that

Ua(Tg) = My — mg.

Therefore, m, = fa(x,) and f, is surjective.
For b > a, we have

va(ya,b(mg) —md) = za,b(?}b(mg)) — Zq = Zap(2p) — Za = 2 — 24 = 0.

So, there is a unique % € X, such that

Ua(g) = Yap(my) — my.

For b > a, consider the application

Ty Xy — Xq
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defined by
x:z,b(xb) = Tap(wp) + SUZ, Ty € Xp.
The diagram
Xy e M,
x;,{ Jya,b
Xo 5 M,

is clearly commutative. Therefore, for ¢ > b > a, we have

! /=1 0
xa,bOxb,c_fa oyavboybacofc_xa,c‘

Since z,; is additive and continuous, z,; is uniformly continuous. Hence, ! , is
also uniformly continuous and we may consider (X,, a:fl7b)ae A as a filtering projective
system of complete metric spaces. We may also assume that the metric of X, is
associated to an application

[l = Xa — [0, +o00]

satisfying the conditions in part (c) of Remark 4.4.
Now, consider a € A and ¢ > 0. We know that

B(e) ={z € X, : ||z]|, < €}
is a neighborhood of zero in X,. By hypothesis, there is b > a such that
.CI?a,b(Xb) - B(E) -+ .CEQVC(XC) c>b.

Remark that for ¢ > b and for any z. € X., we have

(1 (7)) = 24 (T0e() + 75)
= ZTap(Tpe(Te)) + Tap(z]) + xz

= Tae(e) + Tap(@f) + g

and

x;,c(x6> = Tae(Te) + T4

/
a,c’

3 / / _
Since x,, 0 2y, . = T, ., We get

Tap(xy) + mz = .
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Then, for ¢ > b, we have successively

x b(Xb) = -Ta,b(Xb + l‘b

a,

It follows that
a4(Xp) C [, (Xo)], Ve >
Hence, the projective system
(Xa x:l,b>a€A

satisfies the conditions of Proposition 4.3. Since for b > a, the diagram

commutes and since for any a € A, f, is bijective, we may turn

(Mm ya,b>a€A

into a projective system of complete non-empty metric spaces which satisfies the
same conditions. Therefore,
lim M, # 0.

a€A

Then, there is m = (mg)aca € lim M, and we have
a€A

(lli Va)(m) = (Va(1a))aca = (2a)aca = 2.

[

Theorem 4.6. Let (X,, Zqp)aca be a filtering projective system of topological abe-
lian groups. Assume that A has a countable cofinal subset and that for any a € A,

X, is metrizable and complete. Then, (Xa, Zap)aca is lim-acyclic if and only if for
acA
any a € A and any neighborhood of zero V' in X,, there is b > a such that

xa,b(Xb) cV+ .%'QVC(XC) Vec>b.
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Proof. The condition is sufficient. It is clear that cf(A) < wy. Hence, by Theo-
rem 2.10,
LH*Rlm X,) =0  k>2.
<—

acA
Moreover, there is a strict monomorphism
e: X — II(O(X)).
If (Z,q) is the cokernel of e, the sequence
0— X SI(0(X) L Z—0

is strictly exact and it gives rise to the long exact sequence

liLn €q lln qa
0 — lim X, =2 lim(II(O(X)))s ~— lim Z, — LH*(Rlim X,) — 0  (¥)
— — — —
acA acA acA acA
of LH(TAD). Set
f= !iLHQG-
acA

By Proposition 4.5, f is surjective. Now, let us show that f is strict.
For b > a, since x,; is additive and continuous, it is uniformly continuous.
Consider a € A and € > 0. By hypothesis, there is b > a such that

l'a,b(Xb) C B(E) + $GVC<XC) Y e>b.

It follows that
Tap(Xp) C [Ta,e(Xe)], Y e >b.

Therefore, by Proposition 4.3, for any a € A and any € > 0, there is b > a such that

xa,b(Xb) C [qa(li_rnXa)] .
a€eA ¢

Consider a € A and V' a neighborhood of zero in X,,. There is € > 0 such that
V' D B(e). By what precedes, there is b > a such that

xa,b(Xb) C IQa(liLn Xa)

a€A

Therefore,

Tap(Xp) C B(e) + qu(lim X,,) C V + g (lim X,,)
acA acA
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and for ¢ > b,

xa,c(Xc) = xa,b(xb,c(Xc)) - xa,b<Xb) cV+ qa(liLn Xa)'
acA
Then, by Theorem 3.4,
LH'(Rlim X,) € TAb.
acA
Let
J : TAb — LH(TAD)

be the canonical functor. We know that the cokernel of J(f) in LH(ZAD) is given
by the complex
0 — coim f —f—>limZa — 0
—
acA
where lim Z, is in degree 0. Moreover, f’ is monomorphic and
acA

coker f ~ coker f’.

Hence, we get
coim f ~ coim f’ and im f ~im f’.

Since the sequence (*) is exact in LH(ZAb), we have

coker(J(f)) ~ LH'(Rlim X,).
acA

Therefore, coker J(f) € TAb. Then, f’ is strict and it follows that so is f.
Finally, since f is a strict epimorphism, we obtain

coker(J(f)) ~ LH'(Rlim X,) ~ 0
acA
and
LH*Rlm X,) ~0 Vk>1
acA

The condition is necessary. Since (X, Tap)aca is lim-acyclic,
a€A

LH'(Rlim X,) ~ 0 € TAb.
acA
Then, by Theorem 3.4, for any a € A and any neighborhood of zero V' in X, there
is b > a such that
Tao(Xe) CV 4 qo(lm X))  Vezb.

a€A
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In particular,

xa,b(Xb) cV+ QQ(liLn Xa)'
acA

Since, for ¢ > b, 4. © ¢ = ¢q, We have

l'a,b(Xb) cCV+ xa,c(chiﬂl Xa)) cCV+ xa,c<Xc)-
acA
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