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Abstract

In this paper, we prove that any perfect complex of D*°-modules may be
reconstructed from its holomorphic solution complex provided that we keep
track of the natural topology of this last complex. This is to be compared
with the reconstruction theorem for regular holonomic D-modules which fol-
lows from the well-known Riemann-Hilbert correspondence. To obtain our
result, we consider sheaves of holomorphic functions as sheaves with values in
the category of ind-Banach spaces and study some of their homological prop-
erties. In particular, we prove that a Kiinneth formula holds for them and we
compute their Poincaré-Verdier duals. As a corollary, we obtain the form of
the kernels of “continuous” cohomological correspondences between sheaves of
holomorphic forms. This allows us to prove a kind of holomorphic Schwartz’
kernel theorem and to show that D> ~ RHomtop(O, O). Our reconstruction
theorem is a direct consequence of this last isomorphism. Note that the main
problem is the vanishing of the topological Ext’s and that this vanishing is a
consequence of the acyclicity theorems for DFN spaces which are established
in the paper.
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0 Introduction

In algebraic analysis, one represents the systems of analytic linear partial differential
equations on a complex analytic manifold X by modules over the ring Dx of linear
partial differential operators with analytic coefficients. Using this representation,
the holomorphic solutions of the homogeneous system associated to the Dx-module
M correspond to

Hom 5, (M, Ox)

where Ox denotes the Dx-module of holomorphic functions. If one wants also
to take into consideration the compatibility conditions, one has to study the full
solution complex

Sol(M) = RHom , (M, Ox)

in the derived category DT (Cx) of sheaves of C-vector spaces. In [4] (see also [7]), it
was shown that the functor Sol induces an equivalence between the derived category
formed by the complexes of regular holonomic Dyx-modules and that formed by
the complexes of C-constructible Cx-modules. This equivalence is usually called
the Riemann-Hilbert correspondence. One of its corollaries is that it is possible
to reconstruct a complex of regular holonomic Dx-modules from its complex of
holomorphic solutions.

Our aim in this paper is to extend this reconstruction theorem to perfect com-
plexes of D¥-modules by taking into account the natural topology of the complex
of holomorphic solutions. Informally, the relation we will obtain is of the type

M ~ RHomtop(Sol(M), Ox)
and will follow from the fact that
DY ~ RHomtop(Ox, Ox).

To give a meaning to these formulas, we will have to work in the derived category of
sheaves with values in the category of ind-objects of the category of Banach spaces
using the techniques and results of [16].



A Topological Reconstruction Theorem for D*°-Modules 3

Let us now describe with some details the content of this paper.

Following [13], we denote Ban (resp. Fr, 7 c) the quasi-abelian category of Ba-
nach spaces (resp. Fréchet spaces, arbitrary locally convex topological vector spaces).
Let us recall (see e.g. [10]) that, for any set I, the space I*(I) (resp. (*°(I)) of
summable (resp. bounded) sequences of C indexed by [ is projective (resp. injec-
tive) in Ban. Using these spaces, one shows easily that Ban has enough injective
and projective objects. Recall also that the category Ban has a canonical structure
of closed additive category given by a right exact tensor product

® : Ban x Ban — Ban
and a left exact internal Hom
L : Ban®® x Ban — Ban.

Denoting &" the left derived functor of @ and RL the right derived functor of L,
we have the adjunction formula

RHom (E &" F,G) ~ RHom (E,RL (F, G)).

Therefore, using [16], we see that the category Znd(Ban) of ind-objects of Ban is
an elementary closed quasi-abelian category. It follows that sheaves with values in
Ind(Ban) share most of the usual properties of abelian sheaves (including Kiinneth
Theorem and Poincaré-Verdier duality). Recall that, in Znd(Ban), the internal
tensor product

® : Ind(Ban) x Ind(Ban) — Ind(Ban)

and the internal Hom functor
L : (Znd(Ban))® x Ind(Ban) — Ind(Ban)
are characterized by

(“lim” E;) ® (“lim ™ Fy) = lim lim “F; ® Fy”
iel jed i€l jeJ

and

L(“lim” E;, “lim” F}) = limlim “L (E;, F})”.

iel jed iel jeJ
To fix the notations, recall also that the internal tensor product (resp. internal Hom
functor) for sheaves with values in Znd(Ban) are denoted & (resp. L).
In the first section of this paper, we study the functor IB : T¢ — Znd(Ban)

defined by setting
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where Bg is the set of absolutely convex bounded subsets of E and Ep the linear
hull of B. We establish the properties of this functor we need in the rest of the
paper. More precisely, we prove that if E is bornological and F' complete, then

HomInd(Ban) (IB(E)7 IB(F>> = HOHITC(E, F)

and
IB(L,(E, F)) ~ L(IB(E),IB(F))

where L, (E, F) is the vector space Hom (£, F) endowed with the system of semi-
norms
{pB : p continuous semi-norm of F, B bounded subset of E'}

where

ps(h) = sup p(h(e)).

e€B
Moreover, we show that IB is compatible with projective limits of filtering projective
systems of complete spaces. We show also its compatibility with complete inductive
limits of injective inductive systems of Fréchet spaces indexed by N.

The second section is devoted to the proof of some acyclicity results for L and ®
in Znd(Ban). First, we show that if E is a DFN space and if F' is a Fréchet space,
then both LH*(RHom (IB(E),IB(F))) and LH*(RL (IB(E),IB(F))) are 0 for k # 0.
(Note that a similar result was obtained for the category 7 ¢ by Palamodov in [8].)
Next, we establish that if E and F' are objects of Znd(Ban) with E nuclear, then

EQ"F~EQF. (*)

We start Section 3 by proving that if X is a topological space with a countable
basis and if F' is a presheaf of Fréchet spaces on X which is a sheaf of vector spaces,
then

U — IB(F(U)) (U open of X)

is a sheaf with values in Znd(Ban). This shows, in particular, that IB(Ox) is a sheaf
with values in Znd(Ban) for any complex analytic manifold X. We end the section
by establishing that
RI'(U,IB(Ox)) ~ T'(U,IB(Ox))
if U is an open subset of X such that H*(U, Ox) ~ 0 (k # 0). This result may be
viewed as a topological version of Cartan’s Theorem B. As a corollary, if X is a Stein
manifold, we get a similar isomorphism with U replaced by any holomorphically
convex compact subset of X.
In Section 4, using (*), we show that

IB(Ox)K" IB(Oy) ~ IB(Oxxy)
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for any complex analytic manifolds X and Y. This allows us to obtain a topological
Kiinneth Theorem for holomorphic cohomology.

Section 5 is devoted to the proof that, for any complex analytic manifold X
of dimension dx, the Poincaré dual of IB(Ox) is isomorphic to IB(Q2x)[dx]. Since
the problem is of local nature, we find, by a series of reductions using the results
established in the previous sections, that it is sufficient to show that, if P is a closed
interval of C and V' is an open interval of C", then

RT pyy (C x V, IB(Ocyy ) ~ L(IB(Oc(P)), IB(Oy (V) [~ 1.

This isomorphism is obtained by proving that, in this situation, one has a split exact
sequence of the form

0 — O (C x V) = Oy (C\ P) x V) — L, (Oc(P), O (V) — 0

in 7ec.

We begin Section 6 by giving the general form of the kernels of continuous
cohomological correspondences between sheaves of holomorphic differential forms.
More precisely, we show that, if X, Y are complex analytic manifolds of dimension
dx, dy, then

IB(QES)dx] ~ RL (g5 TB(2% ), g IB(95)).

As a consequence, we get that for any morphism of complex analytic manifolds
f: X — Y, we have a canonical isomorphism

RL(f7'IB(Oy),IB(Ox)) ~ §7' Rl IB(QYA))[dy]

where Ay is the graph of fin X x Y and 67 : X — X x Y is the associated graph
embedding. In particular,

LH*RL (f'IB(Oy),IB(Ox))) =0
for k # 0 and

RHom (f~'1B(Oy),1B(Ox)) ~ DY (**)

X—Y"

Note that this contains the fact that continuous endomorphisms of Ox may be
identified with partial differential operators of infinite order as was conjectured by
Sato and established by Ishimura in [3].

We start the last section by proving an abstract reconstruction theorem for
perfect complexes of modules over a ring in the closed category Shv(X;Znd(Ban)).
Thanks to the embedding functor

Iy : Sho(X; V) — Shv(X; Ind(Ban))
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(where V denotes the category of C-vector spaces) we are also able to prove a similar
formula for perfect complexes of modules over an ordinary sheaf of rings. Using (**)
with f = idx, we get a topological reconstruction theorem for D¥-modules. More
precisely, we prove that the functors

RL, (pee) (Iv(-), IB(Ox)) : D™ (Mod(DS)) — D (Sho(X;Znd(Ban)))

and
RHom (-,1B(Ox)) : D~ (Shw(X;Znd(Ban))) — D*(Mod(DY))

are well-defined and that
RHom (RL j, (pey (1v(M), IB(Ox)), IB(Ox)) ~ M

for any perfect complex of DS-modules M. Note that the image of M by the first
functor above is a kind of topologized version of the holomorphic solution complex of
M and that the preceding formula may be viewed as a way to reconstruct a perfect
system of analytic partial differential equations of infinite order from its holomorphic
solutions.

1 The functor IB: 7¢ — Znd(Ban)

For any object E of T¢, we denote by Bg the set of absolutely convex bounded
subsets of E and by Bg the set of closed absolutely convex bounded subsets of F.
If B € Bg, we denote Ep the linear hull of B and pp the gauge semi-norm of Ep
associated to B.

Definition 1.1. To define the functor

IB: Tc — Ind(Ban)

we proceed as follows. For any object E of 7 ¢, we set

Consider a morphism f : £ — F of Tc. For any B € Bg, f(B) € Bp. Hence, f
induces a morphism Ep — Fpy. This morphism being functorial in B, we obtain
a morphism

“h_H)l” EB N “li_r)n” Ff(B)

BeBg BeBg
in Znd(Ban). We define

IB(f) : IB(FE) — IB(F)
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by composing the preceding morphism with the canonical morphism

~

Remark 1.2. If F is a Banach space, then
IB(E) ~ “E”.

As a matter of fact, since any bounded subset of FE is included in a ball b(p) centered
at the origin, we have
IB(E) ~ “lim” Ey)

p>0

and the conclusion follows from the isomorphism Ej,) ~ E.

Lemma 1.3. Let E and F be two objects of Tc. Then,

lim lim Hom, (Ep, Fi:) ~ B(E, F)
BeBg B'eBr

where
B(E,F)={f:FE — F: f linear, f(B) bounded in F' if B bounded in E}.
Remark 1.4. If E and F' are objects of 7 ¢, we have
Hom, (E,F) C B(E,F).

In general, this inclusion is strict but, as is well-known, it turns into an equality if E
is bornological (i.e. if any absolutely convex subset of E that absorbs any bounded
subset is a neighborhood of zero).

Proposition 1.5. Let E and F' be two objects of Tc. If E is bornological and F
complete, then
Homznd(Ban)(IB(E), IB(F)) ~ Hom , (E, F).

Proof. Since the inclusion By C By is cofinal, we have

HomInd(ch)(IB(E)’ IB(F)) ~ HomInd(Ban)(“li—I>n” EB, “lim” F\B/>

BeBE B/EEF
~ lim lim Homy, (Eg, Fp).
BEBEB/EEF

Since F' is complete, Fg/ is a Banach space and

HomB(m(E\B, F\B/) ~ Hom, (Ep, Fp).
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It follows that
Hom 7,45y IB(E), IB(F)) = lim lim Hom, (Ep, Fip)
BeBg B'eBr
~ B(E,F)~ Hom, (E,F)
where the second isomorphism follows from Lemma 1.3 and the last isomorphism
from Remark 1.4. O

Proposition 1.6. Denote
IL : Znd(Ban) — Tec

the functor defined by
IL(“lim ” E;) = lim F;.

- -

i€l i€l
Let E be an object of Ind(Ban) and let F' be a complete object of Tc. Then,

Homznd(B(m)(E, IB(F)) ~ Hom , (IL(E), F).
Proof. Assuming F' ~ “lim” E;, we have
i€l

Homznd(&m) (E,IB(F)) ~1i mHomInd(Ban)(“Ez” ,IB(F))
~ lim Hom 7, 4 5, IB(E3), IB(F7))
~ lim Hom , (E;, F) ~ Hom , (IL(E), F)

where the second isomorphism follows from Remark 1.2 and the third from Propo-
sition 1.5. O

Corollary 1.7. Let Z be a small category. For any object X of Tc*™ such that
X (i) is complete for any i € I, we have
IB(lim X (7)) = lim IB(X ().
i€l 1€
Proof. For any object E of Znd(Ban), we have
Hom 7,,am) (£, IB(lim X (4))) = Hom 7 (IL(E), lim X (7))
i€l €L
~ lim Hom , (IL(E), X (%))
€L

~ lim Hom g, 5, (£, IB(X(7)))

€L

1E]

where the first and last isomorphisms follow from Proposition 1.6. The conclusion
follows from the theory of representable functors. 0
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Proposition 1.8. Assume that (F,, fmn)nen is an inductive system of Fréchet
spaces with injective transition morphisms and that

lim F,
—
neN
is complete. Then, the canonical morphism
lim IB(F,) — IB(lim F,,)
- —
neN neN

is an isomorphism.
Proof. Applying IB to the canonical morphisms

rn:Fn—>li_r>nFn
neN

and using the characterization of inductive limits, we get the canonical morphism

lim IB(F,) — IB(lim F},). (*)
neN neN

Let B be a closed absolutely convex bounded subset of lim F;,. It follows from
nelN

e.g. [6, Chap. IV, § 19, 5.(5) (p. 225)] that, for some n € N, B is the image of a
closed absolutely convex bounded subset B, of F, by the canonical morphism r,.
Since 7, is injective, it induces the isomorphism of semi-normed spaces

(F)p, — (lim F,) 5.
neN
Hence, we get the isomorphism of Banach spaces

imF,)p — (F,)g -

n

neN
we get a canonical morphism
“(lim F,)5” — lim IB(F,).
neN neN

Finally, using the characterization of inductive limits, we obtain a canonical mor-

phism
B(limF,) = lim (g F,)p" — lim IB(F,).
neN BeBiimp, nelN neN

A direct computation shows that this morphism is a left and right inverse of (*). O
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Remark 1.9. Note that, thanks to [8, Proposition 7.2] and [8, Corollary 7.2|, a
countable filtering inductive system of Fréchet spaces which is lim-acyclic in 7¢ is
essentially equivalent to an inductive system which satisfies the assumptions of the
preceding proposition. Hence, IB also commutes with the inductive limit functor in
such a situation.

Definition 1.10. Let £ and F be two objects of 7c¢. As usual, we denote by
L,(E, F) the vector space Hom  (E, F') endowed with the system of semi-norms

{pp : p continuous semi-norm of F, B bounded subset of E}

where

pa(f) = supp(f(e)).

eeB

Lemma 1.11. Let E and F be two objects of 7 c. Assume FE is bornological. Then,

L,(E,F) ~ lim L,(Es, F)
BeBg

in T c. Assume moreover that F' is complete. Then,

L,(E,F)~ li

€

Lb(E\BaF>

15

Sy
oy

E

in 7ec.

Proof. Keeping in mind the properties of bornological spaces, it is clear from the
definition of L, (£, F) that

L,(E,F)~ lim L,(Ep, F).
BeBg

Since any ball of EB is included in the closure of a semi-ball of Fg, any bounded
subset of Ep is included in the closure of a bounded subset of Ep. This property
and the completeness of F' shows that

L,(Eg,F)~L,(Eg, F).
Hence the conclusion. O
Lemma 1.12. If E is a Banach space and if F' is a complete object of T ¢, then

IB(L,(E, F)) ~ L(“E”,IB(F)).
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Proof. For any B’ € B, set
By ={feHom,(E,F):|le]| <1 = f(e) € B'}.

Clearly, B; belongs to BLb(E’F)' Moreover, if B’ is closed in F', then B is closed in
L,(E, F) and one checks easily that

(Lb(E’ F))Bl/) ~ L (E, FB/)
as Banach spaces. Hence, one has successively

IB(L,(E, F)) = “lim” (L,(E,F))p =~ “lim"(L,(E, F))g
BEEL (E,F) B/EEF
b

~ “lim” L(E, Fp) ~ L (“E”, IB(F))

B'€Bp
where the second isomorphism follows from the fact that the inclusion
{B;: B €Br}C ELI,(E’F)
is cofinal. 0

Proposition 1.13. Let E and F' be two objects of T c. Assume E bornological and
F' complete. Then,
IB(L,(E, F)) ~ L(IB(E),IB(F)).

Proof. We have successively

IB(L,(E, F)) ~ IB( lim L,(Ep, F)) (1)

~ lim 1B(L,(Ep, F) o)
BeBg
~ fim L(“Bw’, IB(F)) )
BeBg

~ L(IB(E),IB(F)),

where the isomorphism (1) follows from Lemma 1.11, (2) from Corollary 1.7 and (3)
from Lemma 1.12. O

Remark 1.14. (1) Let E, F, G be three objects of 7¢. Recall that a bilinear
application
b:ExXF —G
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is continuous if and only if for any continuous semi-norm r of G, there are continuous
semi-norms p and q of E and F respectively such that

r(b(z,y)) < p(z)q(y).
(2) Let E, F be two objects of T¢ with P and ) as systems of semi-norms. As
usual, if p € P and g € (), we denote p ® g the semi-norm on F ® I’ defined by

poq=_inf > pz)ay)

Recall that F'®_F is the object of 7c obtained by endowing £ ® F' with the system
of semi-norms induced by

{p®q:pePqgeQ}.
From this definition, it follows immediately that any continuous bilinear map

b:ExF —G
factors uniquely through a continuous linear map
EFg F—G.
Proposition 1.15. There is a canonical morphism
IB(E) ®IB(F) — IB(E ®_F).
Proof. Note that if B € Bg and B’ € By, then
BB = {({b®b :be B,b € B'})
is a bounded absolutely convex subset of £ ® F. As a matter of fact,
(P@q)(b@V) < p(b)q(t) < supp(b) sup q(b').
beB veB
Moreover, we have a canonical linear map
Ep®Fp — (E X F)pep:.

This map is clearly continuous since e ® f € B® B’ when e € B, ¢/ € B'. Applying
the completion functor, we get a morphism

Ep®Fy — (Eo, F),,,
and hence a morphism

“Ep” & “Fp” ~1B(Ep & Fg:) — IB(E®_F).
Using the definition of inductive limits, we get a morphism

IB(E) ®IB(F) ~ lim lim “Ep” & “Fp” — IB(E®_F).

BeBE B'eBp
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2 Some acyclicity results for L and ® in Znd(Ban)

Lemma 2.1. Let X, Y be two Banach spaces and let f : X — Y be a nuclear map.
Then, there is a continuous linear map p : X — ¢ and a nuclear map ¢ : &® — Y

CO
RN

making the diagram

commutative.

Proof. Since f : X — Y is nuclear, there is a bounded sequence z} of D(X), a
bounded sequence y, of Y and a summable sequence ), of complex numbers such
that

+o00
f@) =Y Mz 2)yn  VeeX.
n=0

Since A, is summable, one can find a sequence r, of non-zero complex numbers
converging to zero such that A, /r, is still summable. One checks easily that the
maps p: X — c” and ¢: ® — Y defined by

+o0
A
)y =1p (2, T and c(s) =  nSn
p(x) ) (s) ; .
have the requested properties. O

Definition 2.2. A projective system E : I°? — Ban where I is a filtering ordered
set is nuclear if for any ¢ € I, thereis 7 € I, 7 > 7 such that the transition morphism

ei,j . Ej — Ez
is nuclear.

Lemma 2.3. Let I be an infinite filtering ordered set and let E : [°® — Ban be a
nuclear projective system. Then,
Nm” E; ~ “fim” X.
%

<_
el keK

where X : K°° — Ban is a projective system with nuclear transition morphisms
such that X* = ¢° for any k € K and #K = #1.
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Proof. Consider the set
K={(i,j)elIx1:j>1,e;:E; — E; nuclear}.

The relation “>” defined by setting (i, j') > (¢, ) if (¢/, ") = (i,j) or i’ > j turns K
into a filtering ordered set. By Lemma 2.1, for any k = (i,7) € K, we may choose
a continuous linear map py, : F; — ¢® and a nuclear map ¢ : ¢ — FE; making the

7\

Ej——r L

diagram

commutative. For any k € K, we set X}, = ® and zp; = idx,. If &' = (¢, j) > k =
(,7), we set
Thg = Pk O €jir O Cy @ Xy — X,

The map ¢ being nuclear, xy ;s is also nuclear. An easy computation shows that if
k <k < K" then zyx o xp g = xp . Consider the functors

o: K —1 and UK —17T

defined by ®((i,7)) = ¢ and V((i,7)) = j. They are clearly cofinal and if ¥’ > k in
K, the diagrams

Xy — Eo@ry Ey) s X
mk,k/J leé(k),é(k/) enp(k),xp(k/)l J“”k,k/
Xe =5 Eaw) By =5 X
are commutative. Hence, we get the two morphisms
“lim” Xy — “lim” Fp) ~ “lim” £; and  “lim” Ej ~ “lim” By — “lim” Xj.
keK keK zeI jeI keK keK

Since these morphisms are easily checked to be inverse one of each other, the proof
is complete. 0

Remark 2.4. Hereafter, as usual, we denote e, the element of ¢® defined by

<€n>m = 6n,m
and we denote e the element of D(c?) defined by

(er,x) = xp.
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Lemma 2.5. For any Banach space Y and any nuclear map
u:c® —Y
the sequence ||u(e,)|ly is summable and for any x € °, we have

+o0

u(e) = 3 {ena) ulen).

n=0

Proof. Since u is nuclear, we can find a bounded sequence z* of D(c"), a bounded
sequence y, of Y and a summable sequence )\, of complex numbers such that

+oo
u(@) =Y A {5, 7) yn
n=0

for any x € . Using the isomorphism D(c?) ~ I!, we see that

+oo
Yl em) | = 75l (*)
m=0

Therefore,
M M +oo
S llulen) I <) Il (@ em) Hlyally
m=0 m=0 n=0

+oo
<3 Pl 1 ooy lally
n=0

+o00o
< An| | sup [|z7 || o0y SUP [|¥n
(Z| |> 1 27 sy s

n=0
and the sequence ||u(e,)||y is summable. Moreover,

“+o0o +o0

u(z) = Z Z An (T35 €m) TmYn

n=0 m=0

+oo
m=0 n=0

=D (e ) ulen)

where the permutation of the sums is justified using (*). O
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Lemma 2.6. Let I be an infinite filtering ordered set and let X : I°°* — Ban be a
nuclear projective system. Assume Y is a Fréchet space. Then, the morphisms

i 0 X; ®7r Y — Lb(D(Xi),Y)
defined by setting
pi(z®_y)(a*) = (z",2)y Ve X;, yeY, 2" eDX;)

induce an isomorphism

~

1im” X; ®_Y ~ “1im” L, (D(X;),Y).
i€l el

In particular, for Y = C, we have

“NUm” X; ~ “lim” D(D(Xj;)).

= =

iel el
Proof. By Lemma 2.3, we may assume that X; = ¢® for any i € I and that the
transition morphisms

Tij: Xj — X; (j > ’l)

are nuclear.
One checks easily that ¢; is a well-defined continuous map. By Lemma 2.5, we
know that the sequence (||zi;(€x)|l x, )nen is summable and that

—+o00
rij(e) = (en ) wijlen)  VeeX;.

n=0

Therefore, we may define a continuous linear map
Vi L(D(X;),Y) = X; @ Y
by setting
+oo
Yig(h) = wijlen) &, hie}).
n=0
One sees easily that the morphisms ¢; and 1); ; induce morphisms of pro-objects

i X, 8, Y — i L, (D(X). )

el el

and
(LliLn” Lb(D<XZ>’ Y) N ﬁLliLn” XZ ®7r ')/'.
i€l i€l
A direct computation shows that these morphisms are inverse one of each other. [
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Definition 2.7. We say that a filtering projective system E : I°°? — 7T ¢ satisfies
Condition ML if for any i € I, any semi-norm p of E; and any € > 0, there is i’ > i
such that

em‘/(Ei) - bp(G) + €i,i//(Ei//) Vi >

Remark 2.8. By [13, Proposition 1.2.9] (which is a direct consequence of [12, The-
orem 4.6]), a countable filtering projective system of Fréchet spaces is lim-acyclic in
7T c if and only if it satisfies Condition ML.

Lemma 2.9. Let £ : [°® — Tc and F : J°® — 7Tc be two filtering projective
systems. If F and F satisfy Condition ML, then the projective system

E® F:(IxJ)®— Fr

defined by

~

(E®_F)(i,§) = E; &_F;
satisfies Condition ML.

Proof. Let (i,7) € I x J and let p ®7r g be a semi-norm of E; ®7r F;. Tt follows from
our assumptions, that there is i’ > 7 and j' > j such that

e’i,i/(Ei/) C bp(l) —+ ei,i”(Ei”) vfi” 2 fi/ (*)
and

fig(Fyr) C bg(1) + fijn(Ejr) V5" 2§ (**)

Fix (i",7") > (¢, j'). Since the maps e;;, f; and e;;» are continuous, we can find
a semi-norm p’ of Ej;, a semi-norm ¢’ of Fj; and a semi-norm p” of E;» such that

poeiy <p, gofiy<q¢ and  poe i <p".

Consider € > 0 and let 2z’ be an element of Ey ®_Fj of the type 2’ ®_y" where
' € Ey,y € Fj. Using (*) and (**) above, we obtain z” € E;» and y” € F;» such
that

€

and  q(fj(v) — fim(y")) < 0+ )

pleip(a’) —eiw(a")) < 2L+ qy)

For 2" = 2" ®_y" € Ein ®_Fju, we get
(p®, q) ((eiy ®, fi)(Z) — (eiin @, fi)(2"))

= (p®, q) ((eiw(a") — esin (") @ fi5(0) + esin(@”) @, (fi50(W') = fi0(Y")))
< plegir(2') — es (@) q(f1.50(y")) + plein (") q(fi50(Y) = Fign(y")) < e.
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Since any element of E; ® F} is a finite sum of elements of the type considered
above, we see that for any ¢ > 0,

(i @ fi)(Eir @ Fy) C bpe o(€) + (esim @, fjm) (Ein @ Fyr).

The conclusion follows directly since Ey @ Fj is dense in Ey ®7r F. ]

Remark 2.10. Let E be an object of 7¢. Recall that F is of type FN if it is a
nuclear Fréchet space and that E is of type DFN if it is isomorphic to the strong
dual of a nuclear Fréchet space.

Lemma 2.11. Assume X is a FN space. Then, there is a projective system
()(naxnnn>n€N
of Banach spaces such that

(a) there is an isomorphism

(b) for m > n, the transition map
Tnm @ Xm — Xy
is nuclear and has a dense range;

(c) there is an isomorphism

(d) for m > n, the transition map
D(zpnm) : D(X,) — D(X)
is nuclear and injective.

Proof. Since X is a FN space, there is a cofinal increasing sequence (py,)nen of
continuous semi-norms of X such that the canonical map

X

Pn+1 - Xpn

is nuclear. For such a sequence, the canonical map

A~ ~

— X

Pn+1 Pn
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is also nuclear and has a dense range. Moreover, it is well-known (see e.g. [6,
Chap. IV, § 19, 9.(1) (p. 231)]) that

Clearly,

where D;(X) is the inductive dual of X.

Recall that an absolutely convex subset V' is a neighborhood of 0 in D;(X) if it
absorbs any equicontinuous subset of X’. Hence, it is clear that a neighborhood of 0
in Dy(X) is a neighborhood of 0 in D;(X). We know that X is reflexive (see e.g. [9,
§ 5.3.2 (p. 93)]). Hence, Dy(X) is bornological (see e.g. [6, Chap. VI, § 29, 4.(4)
(p. 400)]). The space X being itself bornological, the bounded subsets of Dy, (X)
are equicontinuous. So, any neighborhood of 0 in D;(X) is a neighborhood of 0 in
Dy(X) and D;(X) ~ Dy(X).

Since (d) follows directly from (b), the proof is complete. O

Proposition 2.12. Assume E is a DFN space and F' is a Fréchet space. Then, the
canonical morphism

Hom (IB(E),IB(F)) — RHom (IB(FE),IB(F))
is an isomorphism.
Proof. Since E is a DFN space, there is a FN space X such that
E ~Dy(X).

Let (X, nm) be a projective system of the kind considered in Lemma 2.11. We
have
E ~ Dy(X) ~ lim D(X,,).

Since the transition morphisms
D(zpm) : D(X,) — D(X,) (m >n)
are injective and E is complete, Proposition 1.8 and Remark 1.2 show that

IB(E) ~ lim “D(X,)".

neN
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Using Lemma 2.3, we find a nuclear projective system (Y, yn.m) with ¥, = ¢® such
that

“lim” X,, ~ “lim” Y,,.
neN ne

Z

It follows that
IB(F) ~ h_r)n “D(Yn)”.

neN
Hence, we have successively
RHom (IB(E), IB(F)) ~ RHom (L lim “D(Y,)”, IB(F)) (1)
neN
~ R%RHom(“D(Yn)”, IB(F)) (2)
~ R%Hom(“D(Yn)”, IB(F)) (3)
~ R%Hom (IB(D(Y,)),IB(F)) (4)
~ Rlim Hom . (D(Y,), F') (5)
neN

where the isomorphism (1) follows from the fact that filtering inductive limits are
exact in Znd(Ban), (2) follows from [11, Proposition 3.6.3|, (3) follows from the
fact that “D(Y,,)” ~ “D(®)” ~ “I'” is projective in Znd(Ban), (4) follows from
Remark 1.2 and (5) follows from Proposition 1.5. By Lemma 2.6, we have the
isomorphism

“li_l,rl?? (Yn ®7r F) ~ “liLn” Lb(D<Yn>’ F).

neN neN
Forgetting the topologies and applying the derived projective limit functor for pro-
objects (see [11]), we obtain the isomorphism

Rlim(Y, & F)~ RlimHom, (D(Y,), F).

neN neN

Since (X, Tnm)nen satisfies Condition ML, it is lim-acyclic in Te (see Remark 2.8).
It follows that (Y, Yn.m)nen is also @—acyclic in 7c¢ and, hence, satisfies Condi-

tion ML. Using Lemma 2.9, we see that R lim(Y,, &_F) is concentrated in degree 0.
neN
It follows that the projective system

(Hom 7, (D(Yy), F))

neN

is lim-acyclic and the conclusion follows. O
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Theorem 2.13. Assume E is a DFN space and F is a Fréchet space. Then, the
canonical morphism

L(IB(E),IB(F)) — RL(IB(E), IB(F))
is an isomorphism.
Proof. 1t is sufficient to show that
LH*RL(IB(E),IB(F))) ~ 0
for k£ > 0. This will be the case if
Hom (“I'(I)", RL(IB(E),IB(F)))

is concentrated in degree 0 for any set I.
Let I be an arbitrary set. Since “I'(I)” is a projective object of Znd(Ban) and
since F'is complete, we have

RL (“IY(I)",IB(F)) ~ L (IB(I1*(I)),IB(F))
~ IB(L,(I'(1), F))
~ IB(I*(I, F))

where [*(1, F') is the Fréchet space formed by the bounded families (x;);cr of F' (a
fundamental system of semi-norms being given by

{pr : p continuous semi-norm of F'}
where p;((z;)ier) = sup;c;p(z;)). Therefore, we have the chain of isomorphisms
Hom (“I*(I)”, RL(IB(E),IB(F))) ~ RHom (“I*(I)”, RL (IB(E),IB(F)))
~ RHom (“I*(I)” ® IB(E),IB(F))
~ RHom (IB(E) &" “I'(I)”,IB(F))
~ RHom (IB(E), RL (“I'(I)",IB(F)))
~ RHom (IB(E), IB(I®(I, F)))

o~ o~ o~ o~

and the conclusion follows from Proposition 2.12. O

Lemma 2.14. Let X, Y be two Banach spaces and let f : X — Y be a nuclear
map. Then, there is a nuclear map p : X — [' and a continuous linear map

ll
N
X%Y

c: 1! — Y making the diagram

commutative.
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Proof. Work as for Lemma 2.1. O

Definition 2.15. An inductive system E : I — Ban where [ is a filtering ordered
set is nuclear if for any ¢ € I, thereis 7 € I, 7 > ¢ such that the transition morphism

€ji - Ez — Ej
is nuclear. An object of Znd(Ban) is nuclear if it corresponds to a nuclear inductive
system.

Remark 2.16. Working as in the proof of Proposition 2.12, we see easily that IB(FE)
is nuclear if E is a DFN space.

Lemma 2.17. Let I be an infinite filtering ordered set and let E : I — Ban be a
nuclear inductive system. Then,

“lim” B; ~ “lim” X,.
— —
el keK

where X : K — Ban is an inductive system with nuclear transition morphisms such
that X* = [' for any k € K and #K = #1.

Proof. Work as for Lemma 2.3 using Lemma 2.14. O

Lemma 2.18. Let I be a filtering ordered set. For any F' € D~ (Znd(Ban)) and
any E € D™ (Ind(Ban)'), we have

lim E;) " F ~ lim(E; " F).
- -
el el

Proof. 1f P is a projective resolution of F', we have successively

. ~ L . A . a . a L
(lim ;) &" F ~ (lim E;) @ P. ~ lim(E; @ P) ~ lim(E; &" F).
i€l i€l i€l i€l

O

Proposition 2.19. Let E and F be objects of Ind(Ban). Assume E is nuclear.
Then,
E&"F~E&F

Proof. Using Lemma 2.17, we may assume that

E = “lim” X,
juinininy

el
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where X : I — Ban is a filtering inductive system with X; = [!, the transition
morphisms
Tji - Xz — Xj

being nuclear. We may also assume that

where Y : J — Ban is a filtering inductive system. Then, we have

E®LF ~ (“h_H)l” Xz) ®L (“h_H)l” Y;)

el JjeJ
. ~ L
2 llm llm 13 i?? ® (L'}/}?? (1)
el jeJ
2 im llm (LXiﬁ ® (L'}/}?? (2)
el jeJ
2 ((4lim77 X‘)®(“lim” Y])
el Je€J
~FRQF

where the isomorphism (1) follows from Lemma 2.18 and (2) from the fact that
“X;” ~ “I' is projective in Znd(Ban). O
3 A topological version of Cartan’s Theorem B

Proposition 3.1. Let X be a topological space with a countable basis. If F' is a
presheaf of Fréchet spaces on X which is a sheaf of vector spaces, then

U — IB(F(U)) (U open of X)
is a sheaf with values in Znd(Ban).

Proof. Let U be an open subset of X and let & be an open covering of U. Consider
the sequence

0—FU) S T[FV) S ] Fvow) (*)

Veu V,Weu

where o and (§ are the continuous applications defined by

bv oo =Tyuyu and pV,WOﬁ:TVﬁW,VOpV_TVﬁW,WOpW
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where py and py are the canonical projections and 7y is the restriction map.
Since F is a sheaf of vector spaces, this sequence is algebraically exact. Let us show
that it is strictly exact.
(1) If U is countable, F(U), [[y¢y F(V) and [y e F(V N W) are Fréchet
spaces. Then, by the homomorphism theorem, the sequence (*) is strictly exact.
(2) Assume that U is not countable. Since X has a countable basis, there is a
countable set A of open subsets of X such that for any open V of X,

v=Jt, UieA
keN

Then, consider the countable set
V={V'eA: 3V €U such that V' C V'}.

For any U’ € U, we may assume that U’ = |, ., Uy, with Uy € V. It follows that V
covers any U’ in U and therefore is a covering of U. Hence, by (1), the sequence

0—FU) S JIFroH S I FOv nw)
V'ey VI W'ey

is strictly exact. Now, consider a map f : V — U such that V' C f(V’) for any
V' € V. Then, consider the commutative diagram

0— F(U)—= [[ FOv)—— [ F(vnw)

Veu V,Weu

© L |
0——F(U)— [[ F(V) — I rFovow)
V'ey V' \W'ey

where v and ¢ are respectively defined by

Py oy =Ty f(v) O PF(VY)

and

pv/wr © o= Tviaw! f(vHnf(w?) C P!y, f(w’)-
To prove that the sequence (*) is strictly exact, it is sufficient to establish that « is
a kernel of 8. Let h : X — [], o, F(V) be a morphism of 7 ¢ such that 5o h = 0.

Since ' oyoh = do Foh = 0 and since o is a kernel of 3, there is a unique
morphism A’ : X — F(U) such that o/ o b’ =y o h. Set

KW' =h—aoh.
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We clearly have yo b’ =0 and foh” = 0. Fix V € U. For any V' € V such that
V'V, we have

0=pvsuvyofoh” =rvapvyyopyoh” —rvagwn. sy oprovryoh”

It follows that

ryry o py o ' =1y vagwn o rvagry o pv o b’
= TVivng(v) O TVag(v). (v © Prvn © B
= Ty (v © Prvry 0 B
=pyroyoh”
=0.

Since {V' € V: V' C V'} is a covering of V and since F' is a sheaf of vector spaces,
we get
proh” =0 YV el.

It follows that A” = 0 and that h = a o h’. Since « is injective, h’ is the unique
morphism of 7 ¢ such that h = awoh’. Therefore, « is a kernel of 3 and the sequence
(*) is strictly exact.
Finally, since the functor IB preserves projective limits of complete objects of
T ¢ (see Corollary 1.7), the sequence
0 — IB(F(U) == [T B(F(v) 22 [ BEV W)

veu V,weu
is strictly exact in Znd(Ban) . Hence, the conclusion. O

Definition 3.2. For short, we denote IB(F') the sheaf with values in Znd(Ban)
associated to a presheaf F' of the kind considered in Proposition 3.1.

Hereafter, X will denote a complex analytic manifold of complex dimension dx.
We denote Ox the sheaf of holomorphic functions on X. Recall that for any open
subset U of X, Ox(U) has a canonical structure of FN space. Recall moreover that
if V is a relatively compact open subset of U the restriction morphism

Ox(U) — Ox(V)
is nuclear. In particular, if K is a compact subset of X, then

(lJJDK
open

topologized as an inductive limit is a DFN space.
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Proposition 3.3. For any compact subset K of X, we have
['(K,IB(Ox)) ~ IB(Ox (K)).

Proof. We know that K has a fundamental system (U, ),en of relatively compact
open neighborhoods such that
Un—l—l C Un

for any n € N. Replacing, if necessary, U,, by the union of those of its connected
components which meet K, we may even assume that any connected component of
U, meets K. In this case, it follows from the principle of unique continuation that
the restriction

Ox(Un) — Ox(Unt1)

is injective. Moreover, by cofinality,

Ox (K) ~ lim Ox (Uy).
neN

Hence, by Proposition 1.8, it follows that

IB(li_fgox(Un)) ~ _Ig B(Ox(Uy))-

Since K is a taut subspace of X, a cofinality argument shows that

['(K,IB(Ox)) ~ lim I'(U,, IB(Ox))

lim
—>
eN

and the conclusion follows. O

Hereafter, we denote Cg’g( the sheaf of differential forms of class C, and of bitype

(p,q). Recall that for any open subset U of X, C(p ) %(U) has a canonical structure of

FN space. Since the conditions of Proposition 3.1 are satisfied, IB(Cg:gg) is a sheaf
with values in Znd(Ban).

Proposition 3.4. The sheaf IB(Cg:gg) is I'(U, -)-acyclic for any open subset U of
X.

Proof. Using the techniques developed in [16], one shows easily that
Hom (P, RI(U, 1B(C'Y))) = RI (U, hp(IB(CLY)))

for any projective object P of Znd(Ban). Therefore, the result will be true if the
sheaf of abelian groups hp(IB(CC(g:gg)) is soft. This follows from the fact that it has
clearly a canonical structure of Co, x-module. O
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Theorem 3.5. If U is an open subset of X such that
H*(U,0x)~0  (k>0)

algebraically, then
RI'(U,IB(Ox)) ~ IB(Ox(U)).

Proof. As is well-known, since Cg;?} is a soft sheaf, the Dolbeault complex
0—c09 2l 2l —o
is a I'(U, -)-acyclic resolution of Ox. Therefore, RI'(U, Ox) is given by the complex
0 — (U, 2 1w, .- 21w, ey —o.
Moreover, since H*(U, Ox) ~ 0 for k > 0, the sequence
0 — T (U, 0x) — T(U,c0%) L T(w,c2)- - S T(U,c0%) — 0

is algebraically exact. Since Ox(U) and Cgﬁg((] ) are FN spaces, the last sequence is
strictly exact in 7 ¢. Using [16, Proposition 3.2.26], one sees easily that the sequence

0 — I(U,1B(Ox)) — T(U,IB(CYY)) - - — T(U,IB(CYY)) — 0 (*)

is strictly exact in Znd(Ban). For any open ball b of X, Cartan’s Theorem B shows
that
H*b,0x)~0 (k> 0).

Hence, the sequence
0 — D(b,IB(Ox)) — D(b,IB(C2Y)) -+ — Db, IBCY)) — 0

is strictly exact in Znd(Ban). Filtering inductive limits being exact in Znd(Ban),
we see that

0 — IB(Ox) — IB(CYY) — IB(CYY) - — IB(CYY) — 0

is a strictly exact sequence of sheaves with values in Znd(Ban). Moreover, since, by
Proposition 3.4, IB(C’C(SZ?J)) is I'(U, -)-acyclic, RT'(U,1B(Ox)) is given by

0 — D(U,IB(CYY)) — DU, IB(CY)) -+ — DU, IB(CYY)) — 0.
The sequence (*) being strictly exact, we get

RI'(U,1B(Ox)) ~ T'(U,1B(Oy)).
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Proposition 3.6. If X is a Stein manifold and K is a holomorphically convex
compact subset of X, we have

RI(K,IB(Ox)) ~ IB(Ox (K)).

Proof. Tt is well-known that K has a fundamental system V of Stein open neighbor-
hoods. By tautness, it follows that for k£ > 0, we have
LH*(K,1IB(Ox)) ~ lim LH*(V,IB(Ox)) ~ 0

—
S

<
<

where the second isomorphism follows from Theorem 3.5. Hence, using Proposi-
tion 3.3, we get

RI(K,IB(Ox)) ~ [(K,IB(Ox)) ~ IB(Ox (K)).
]

Remark 3.7. Note that all the results in this section clearly hold if we replace Ox
by the sheaf of holomorphic sections of holomorphic vector bundle. In particular,
they hold for the sheaf (2% of holomorphic p-forms.

4 A factorization formula for IB(Oxy)
Definition 4.1. For any p = (p1,---, p,) € ]0,+00[”, we set
A, ={2€CP: || <p1,- 2] <pp}

and we denote by A, the object of 7 ¢ defined by endowing

A, ={(aa)acr : Z |aa|p® < 400}

«

with the norm

l(@a)acoll = D laalp™

«

Lemma 4.2. For any p € ]0,+o0o[”, we have the isomorphism

A, ~ I(NP).

In particular, A, is a Banach space.
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Proof. This follows directly from the fact that the application

u:A, — ll(Np)
defined by u((@qa)actr) = (@ap®)acnr is continuous and bijective. O
Lemma 4.3. For any p € N,

lim IB(Oo(A,)~ lm IB(A,).

pE]O,—i—oo[p p€]0,+00[p

Proof. This follows directly from the fact that the canonical restriction morphism
O(C;n (Ap/> — O(Cp (Ap)
may be factored through A, for p' > p. O

Proposition 4.4. Assume X, Y are complex analytic manifolds. Then, there is a
canonical isomorphism

L
Proof. Let U, V be open subsets of X and Y. The map
uy,v : Ox(U) X Oy(V) — OXXy(U X V)

defined by setting
uuy (f, 9)(u,v) = f(u)g(v)

is clearly bilinear and continuous. Hence, it induces a morphism
Ox(U) ®_Oy(V) — Oxxy (U xV)
and by Proposition 1.15, we get a morphism
oy IB(Ox(U)) @ IB(Oy (V) — IB(Oxxy (U x V))

which is clearly well-behaved with respect to the restriction of U or V. Therefore,
we get a canonical morphism

1 IB(Ox)RIB(Oy) — IB(Oxyy).

To show that it is an isomorphism, it is sufficient to work at the level of germs and
to prove that
H(zy) : IB(Ox): @IB(Oy)y — IB(Oxxy) @y
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is an isomorphism. The problem being local, we may assume X = C?, Y = C”,
x =0, y=0. In this case, Lemma 4.3 shows that

IB(Ox), ~ lim IB(4,), IB(Oy),~ lim IB(4,)

p€]0,400[? p' €10, 00"’

and
IB(OX><Y>(m,y) ~ h_r)n IB(A(p’p/)).
(p.p )10, +oolP '
A direct computation shows that through these isomorphisms ., corresponds to
the inductive limit of the maps

7,0 IB(4,) ©IB(A4,) — IB(A¢p)
associated to the continuous bilinear maps
top t Ap X Ay — Agpp)

defined by
tp.p ((aa)aerir, (@) weny) = (aaa/o/)(a,a/)eNp+p“

Since the diagram
IB(Ap) ® IB<AP/> — “Ap ® Ap/”

(13 9
Tﬂﬁ/l l ol

IB(A(p,)) = “Alp.p)

is clearly commutative, to prove that p, ) is an isomorphism, it is sufficient to prove
that ¢, is an isomorphism. Thanks to Lemma 4.2, this fact is an easy consequence
of the well-known isomorphism

IM(NP) @ IN(NP') ~ [H(NPFP'),
By Proposition 3.3,
IB(Ox), = T({}, TB(Ox)) ~ IB(Ox({z})).
Since Ox ({z}) is a DFN space, Proposition 2.19, shows that
IB(Ox). " IB(Oy), ~ IB(Ox), ® IB(Oy),.

Therefore,
IB(Ox )8 IB(Oy) ~ IB(Ox)KIB(Oy) ~ IB(Oxxy)

as requested. O
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Corollary 4.5. If A, B are subsets of X and Y then
RI.(A x B,IB(Oxxy)) ~ RI'.(A,IB(Ox)) &" RI.(B;IB(Oy)).

In particular, if X, Y are Stein manifolds and K, L are holomorphically convex
compact subsets of X and Y, then

IB(Oxxy (K x L)) ~ IB(Ox(K)) & IB(Oy(L)).

Proof. The first part is a direct consequence of Theorem 4.4 and the Kiinneth the-
orem for sheaves with values in Znd(Ban). The second part follows from the first
using Proposition 3.6, Proposition 2.19 and the fact that Ox (K) is a DFN space. [

5 Poincaré duality for IB(Ox)

Proposition 5.1. Assume X, Y are complex analytic manifolds of dimension dx
and dy. Then, there is a canonical integration morphism

\/X . RqY!(IB(QXXy)[dXXy]) — IB(Qy)[dy]

Proof. Recall that integration along the fibers of ¢y (i.e. on X) defines morphisms
| ezt —em pae) @
X

which are compatible with 9 and 0. Fix p, ¢ € Z. Let K be a compact subset of X
and let U be an open subset of Y. One checks easily that the morphism

[T (X x Uiezris ™) — rwiezs)
X
is continuous for the canonical topologies. Applying IB, we get a morphism
P (X x UsIB(CEIAAT™)) — D(USIB(CLY ).
Taking the inductive limit on K, we get a morphism
D(Us gy (IB(CEI47))) — T(US IB(CEY, )
and hence a morphism

av (IB(C R ™)) — IB(CLYy)
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of sheaves with values in Znd(Ban). Thanks to the compatibility of (*) with 0 and
0, we also get a morphism of complexes

ay (IB(CE ) [dx xy]) — IB(CE) [dy].

Using the properties of Dolbeault resolutions, we get the requested integration mor-
phism

/X Ry (IB(Qx) [dxr]) — TB(Qy ) dy ],
]

Remark 5.2. Assume X, Y, Z are complex analytic manifolds. Then, one checks
easily that Fubini Theorem gives rise to the commutative diagram

RQZ!(RQYXZ!(IB(QXXYXZ)[dXxYxZD) f—x> RQZ!(IB(QYXZ>[dY><Z]>

k B

Rqz\(IB(Qxxyxz)[dxxyxz]) IB(Qz)[dz]

fX XY
Moreover, using the linearity of the integral, one gets the commutative diagram

Ry (IB(Qxxv)[dxxy]) ® IB(Oy) fx—@d> IB(Qy)[dy] ©IB(Oy)

projectiorit

Rgy (IB(Qx xy)[dxxy] ® ¢y IB(Oy)) cup

cupl

RQY!(IB(QXXY)[dXxY])

™ IB(Qy)[dy]

Theorem 5.3. Assume X is a complex analytic manifold of dimension dx and
denote ax : X — {pt} the canonical map. Then, the morphism

IB(Q% )[dx] — D(IB(Q%)).
induced by adjunction from

/ o —: axi(IBQX[dy]) & IB(QZ)) — IB(C)

is an isomorphism.
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Proof. The problem being local, it is sufficient to treat the case p = 0 and to show
that the morphism

RI(U; IB(Q)[dy]) — RL (RT(U; IB(Op)), IB(C))

obtained by adjunction from
/ o —: RI'U; 1B(Qy)[du)) &" RI.(U;1B(Oy)) — IB(C)
X

is an isomorphism for any open interval U of Cg,,. This follows directly from Propo-
sition 5.5 below with V' reduced to a point. O

Remark 5.4. As we will show elsewhere, the preceding theorem may be used to
simplify the topological duality theory for coherent analytic sheaves.

Proposition 5.5. Assume U is an open interval of C% and V is an open interval
of C% . Then, the canonical morphism

wuy : RD(U x V,IB(Quxv)[duxv]) — RL(RT(U; IB(Oy)), RD(V; IB(Q)[dy]))

obtained by adjunction from
/ o —: RIU x V,IB(Quxv)[duxv]) & RI.(U;1B(Op)) — RI(V;IB(Qy)[dy])
X

is an isomorphism.

Proof. Let W be an open interval of C* and assume that wuvxw and @y are
isomorphisms. Then, we have successively

RIU x V x W IB(Quxvxw)[duxvxw])
~ RL (RT.(U;IB(Oy)), RT(V x W, IB(Qyxw)[dvxw]))
(

(1)
~ RL (RI.(U;1B(Oy)), R (RF (V;IB(Ov)), RE(W; IB(Qw)[dw])))  (2)
~ RL(RL.(U3IB(0y)) &" RLL(VSIB(Oy)), RO(W: IB(@Qu)[dw])  (3)
~ RL(RT.(U x V; IB(OM» RI(W: IB(u) [dw])). (4)

where (1) and (2) follow from our assumptions, (3) is obtained by adjunction and (4)
comes from Corollary 4.5. Using Remark 5.2, we check easily that the composition of
the preceding isomorphisms is equal to ¢y xvw. Hence, an induction on dy reduces
the problem to the case where dy = 1. This will be dealt with in Proposition 5.6
below. 0
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Proposition 5.6. Assume U is an open interval of C and V' is an open interval of
C". Then, the canonical morphism
RI(U x V,IB(Quxv)[duxv]) — RL(RIe(U; IB(Ov)), R (V; IB(Qv ) [dv]))
is an isomorphism.

Proof. For P = U, sheaf theory gives us the two distinguished triangles
RFava(CXV, IB(Q@X\/)) — RFva(CXV, IB(Q@X\/)) — RF(UX V, IB(QUX‘/)) +—1>

and
RI.(U,1B(Oy)) — RI(P,IB(O¢)) — RI(OP,IB(O¢)) - .

If we apply the functor RL (-, IB(Q2y(V))) to the last triangle, we obtain the mor-
phism of distinguished triangles

RTppxy (C x V,IB(Ocyv ))[1] =2 RL (RT (0P, 1B(O¢)), IB(Qw (V)
RTpcv(C X V, IB(Ocy))[1] —— RL (RT(P, TB(Oc)), TB(Q2y (V)

RI'(U x V,IB(Ouxv))[1] — = RL (RT.(U,IB(O¢)), IB(Qy (V)))

+1 +1

where o and (3 are isomorphisms of the type considered in Proposition 5.7 below (0P
is a finite union of closed intervals of C). It follows that 7 is an isomorphism. [

Proposition 5.7. Assume K is a finite union of closed intervals of C and V' is an
open interval of C". Then, the canonical morphism

Rl kwv (C x V;IB(Qexy )[dexv]) — RL(RT(K;IB(Oc)), RT'(V; IB(Qy)[dv]))
obtained by adjunction from

/ o —: Ry (C x V;IB(Qexy ) [dexv]) @ RT(K; IB(Oc)) — RI(V; IB(Qy)[dy])
C

is an isomorphism.
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Proof. Assume first that K is a closed interval of C. Since P x V is closed in C x V/,
we have the distinguished triangle

RIpyy (C x V,IB(Ocxy)) — RI(C x V,IB(Opxy ) — RI((C\ P) x V,IB(Ocxy )
By Cartan’s Theorem B and Theorem 3.5, we have the isomorphisms
RF(C X V, IB(O@X\/)) ~ IB(O@X\/(C X V))

and
RF<<C \ P) X V7 IB<O<C><V>> = IB(OCXV((C \ P) X V))

Hence, the long exact sequence associated to the preceding distinguished triangle
ensures that
LHp (Cx V,IB(Ocxy)) =0  Vk >2

and that the sequence

0—— LHY, ,(C x V,IB(Ocxy)) ——— IB(Ocxv (C x V)) ﬁ

um(o@xv((c \ P) x V)) —— LH ,(C x V,IB(Ocxy)) — 0

is strictly exact. Applying the functor IB to the sequence of Proposition 5.9 below,
we get the split exact sequence

0 — IB(Ocxv (C x V)) — IB(Ocxv ((C\ P) x V) — IB(L,(Oc(P), Oy (V))) — 0 (%)
in Znd(Ban). Therefore,

LHY, ,(C x V,IB(Ocxy)) = 0

and
LH}DX‘/(C x V,IB(Ocxv)) ~ IB(L,(Oc(P), Ov(V))).

Combining these results with Proposition 1.13, Theorem 2.13, Theorem 3.5 and
Proposition 3.6, we obtain successively

RT pyy (C x V,IB(Ocxy ) ~ L(IB(Oc(P)), IB(Oy (V)))[~1]
~ RL (RI(P; IB(Oc)), RT(V; IB(Oy)))[—1].

Thanks to Proposition 5.8 below, it follows easily that the canonical morphism

RI'pyv (C x V3 IB(Qcxy ) [dexv]) — RL(RI(P; IB(Oc)), RT(V;IB(Qy)[dv]))
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is an isomorphism.
Assume now that the result has been established when K is a union of £ < N
closed intervals of C and let us prove it when

N
K:UB
=1

where P, (i = 1,---, N) is a closed interval of C. Set L = (JY ' P, and Q = Py. By
the Mayer-Vietoris theorem associated to the decomposition K = L U (), we have
the distinguished triangle

RI'(K,1B(Oc))
RI'(L,IB(Oc)) & RT(Q, IB(Oc))

RI(LNQ,1B(Oc))
+1

Applying the functor RL (-, IB(Qy(V))), we obtain the distinguished triangle
A4 = RL(RI(L N @ IB(O2)), IBO(V)))

B =RL(RI'(L,IB(O¢)) ® RI'(Q,IB(Oc)), IB(Qy(V)))

C = RL(RI'(K,IB(O¢)), IB(Qy(V)))

Now, consider the Mayer-Vietoris distinguished triangle

A/ = RF(LQQ)X\/(C X V, IB(Q@X‘/))

B = RFLX\/(C X V, IB(Q@X\/)) D RFQX\/(C X V, IB(Q@X\/))

C' = RFva(C X V, IB(Q@X‘/))
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Since LNQ = U, (PN Py) is a union of N — 1 closed intervals of C, the canonical
morphisms

All]—A and B[l]—B

are isomorphisms. The canonical diagram

Al — BN — C'1] =
b
A B c-——
being commutative, the canonical morphism
C'] —C
is also an isomorphism and the conclusion follows. O

Proposition 5.8. Let P be a compact interval of C and let V' be an open interval
of C". Then,

/ cHpo oy (C XV, Qexy) — HY(V, Q)
C

sends the class of
w = h(z,v)dz Adv € H°(C\ P, Qcxv)

(/ap/ h(z,v)dz) dv

where P’ is a compact interval of C such that P'° D P.

to

Proof. Let Z® be an injective resolution of Qcxy . Denote

u CC()ZTCIX‘)/ — T

a morphism extending id : Q¢xy — Qoxy. The class ¢ of w in
Hp o (Cx V,Qoyy ) ~ H(Tp(C x V,T))

is represented by do where o € T'(C x V,Z°) extends u’(w) € T'((C\ P) x V,Z°).
Let ¢ be a function of class Cy, on C equals to 1 on C\ P’ and to 0 on P”; P" and
P’ being compact intervals such that P”® D P, P’ D P”. Then, it is clear that
u(pw) € T(C x V,Z°) and that

o —u’(pw) € Loy (C x V,I7).
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Therefore, do and du® () give the same class in H*(Toxv (C x V,T7)). Tt follows that
¢ corresponds to the class of 9(pw) in HY(Texy (C %V, CC(;}EX"‘)/)). Since ¢ represents

the image of ¢ by the canonical map

HIIDXV(C X V, Q(CXV) — HCIXV(C X V, Q(va),

we see that
/c:/g(gow):/ ggow:/ gpw—/ gpw:/ w.
C C PA\P" P! P P!
Hence the conclusion. O

Proposition 5.9. Let P be a closed interval of C and let V' be an open interval of
C™. Then, in Tc, we have a split exact sequence of the form

0 — Oy (C x V) L Oy ((C\ P) x V) 5 L, (Oc(P), Oy (V) — 0.

where r is the canonical restriction map and T is defined by setting

T = [ hzolg()ds

where g is a holomorphic extension of ¢ € Oc(P) on an open neighborhood U of P
and P’ is a compact interval of C such that P'° D P and P' C U.

Proof. Note that the definition of T" is meaningful since the right hand side clearly
does not depend on the choices of U, g and P’. It is also clear that the function
T'(h)(¢) is holomorphic on V' and that the operator 7" is linear. Let us show that
T is continuous. Let p be a continuous semi-norm of L,(Oc(P), Oy (V)). We may
assume that there is a bounded subset B of O¢(P) and a compact subset K of V'
such that

p(T) = Sup sup 7)), 7€ L,(Oc(P),Ov(V)).

For n > 0, set U,, = {u € C: d(u, P) < 1/n}. By cofinality, we have

Oc(P) =~ lim Oc(Uy).

Moreover, for any n > 0, O¢(U,,) is a Fréchet space and the restriction

Oc(Un) — Oc(Un+1)
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is injective. Hence, by [6, Chap. IV, § 19, 5.(5) (p. 225)], there is n € N and a
bounded subset B,, of O¢(U,) such that B C ry, (B,). Choosing a compact interval
P! of C such that P!° > P and P! C U,, we see that

p(T'(h)) < sup sup
g€Bn vEK

/ h(z,v)g(z)dz
oP!
and we can find C' > 0 such that

p(T'(h)) < Csup sup |g(z)| sup  |h(z,0)].
gEBn 2€0P), (z,0)€0P, XK

Let us consider the linear map
S :Ly(Oc(P),0p(V)) = Ocxyv ((C\ P) x V)

defined by setting
1 1
S(1)(z,v) = =—7 ( ) (v).

2im \z—u
Let us check that S is continuous. Consider a compact subset K of C\ P and a
compact subset L of V. The set

1
Z—u

BK:{ IZEK}

being bounded in Oc(C\ K), 7po\k (Bx) is a bounded subset of O¢(P) and we have

p S0 < o= s suplr(f))]
(z,v)EKXL T ferprx (Bi) vel

For any 7 € L,(Oc(P), Oy (V)) and ¢ € Oc(P), there is an open U of C, containing

P and g € O¢(U) such that ¢ = ry(g). Let K be a closed interval included in U

and such that K° D P and let C be the oriented boundary of K. For any v € V| we

have using the continuity of 7 and Cauchy representation formula

TS0 = 5 [ () eatra:

" 2ur
. (%/ng(_z?udz) ()
—r)0) = T@)0).

It follows that T o S = id or, in other words, that S is a section of T'.
Let us consider the continuous linear map

R: Ocxy ((C\ P) x V) — Oy (C x V)
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defined as follows. Let h € Ocxy ((C\ P) x V) and z € C. Consider R > 0 such
that
z € P, ={z:d(z,P) < R}.

Then, for any v € V, we set

R(W)(2,0) = — /C hwv) 4,

2 Jo, u— 2
where Cg is the oriented boundary of Pg. Since, for any f € Ocxy (C x V) and any
(z,v) € C x V, we have

R(r(f))(z,v) = % ———du = f(z,v),

u—z 20T Jo, u—z

L[ e, L[ fe

we see that R or =id. The map R is thus a retraction of r.
Thanks to a well-known result of homological algebra, the proof will be complete

if we show that
roR+SoT =1id.

To this end, consider h € Ocxy ((C\ P) x V) and (z,v) € (C\ P) x V. Fix R >0
such that z € Pj and denote Cg the oriented boundary of Pr. Let C be the oriented
boundary of a closed interval K C Pgr such that z ¢ K and K° D P. Denoting I'g
the oriented boundary of Pr \ K° and using Cauchy integral formula, we get

(ro R+ SoT)h)(zv) = — / h(g’v)d£+%T(h)( ! )('U)

2w

cn §— 7 zZ—u
L [ h&v) 1 [h(&v)
7% CRf—de—i_%Cz—fdf
_ L[ &)
C 2m I'n f—zdf
= h(z,v).

O

Remark 5.10. The preceding result is a slightly more precise form of a special case
of the Kéthe-Grothendieck duality theorem (see [5] and [1, 2]).

6 A holomorphic Schwartz’ kernel theorem

Definition 6.1. Let X and Y be complex analytic manifolds. We define Q(er)y to
be the subsheaf of Q%' whose sections are the holomorphic differential forms that
are locally a finite sum of forms of the type

wi,jdxil N A dl‘z‘r N dyn VANEIRIVAN dyz5
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where z and y are holomorphic local coordinate systems on X and Y.

Remark 6.2. Clearly, I'(WW; Q(er)y) has a canonical structure of FN space for any

open subset W of X x Y. Therefore, using Proposition 3.1, we see that IB(Q(XT?Y)

is a sheaf with value in Znd(Ban). Moreover, using Proposition 4.4, one can check
easily that

IB(QU),) ~ IB( )R IB(Q).

Theorem 6.3. Assume X, Y are complex analytic manifolds of dimension dx, dy .
Then, we have a canonical isomorphism

IB(QYX") [dx] = RL (g5 TB(Q%), ¢y TB(Q3)).

Proof. We have successively

RL (g 1B(Q%), ¢y IB(Q3)[d ]) RL (g5 TB(%), ¢y D(IB(Q25Y ™)) (1)
RL (qx" IB(), D(gy " IB(Q23Y ™))
»C(q‘1 IB(2%), RL (g5 IB(27" ™), wxxv))
~ RL (IB(Q)R IBQY ), wxy)
~ RL (IBQYH ™) wxwy) (2)
~ D(IB(y )
~ IB(Q()?;(;T’S))[dXxY] (3)

where wxxy denotes the dualizing complex on X x Y for sheaves with values in
Ind(Ban). Note that (1) and (3) follow from Theorem 5.3 and that (2) comes from
Remark 6.2. O

As a consequence, we may now give Proposition 5.7 and Proposition 5.6 their
full generality.

Corollary 6.4. Let X, Y be complex analytic manifolds of dimension dx and dy .
Assume K is a compact subset of X. Then,

Rl gxy (X X Y, IB(Q()?’X(YT 8))[dx]) ~ RL (RI(K;IB(Q%)); RO(Y; IB(Q3))).

Moreover, if X and Y are Stein manifolds and K is holomorphically convex in X,
these complexes are concentrated in degree 0 and isomorphic to

IB(L, (2 (K), 25 (Y))).
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Proof. Transposing to sheaves with values in Znd(Ban) a classical result of the
theory of abelian sheaves, we see that

Rl gy (X x Y;RL (¢ F, ¢,G)) ~ RL (RI(K; F); RI(Y;G))

if 7 and G are objects of Shv(X;Znd(Ban)) and Shv(Y';Znd(Ban)). This formula
combined with Theorem 6.3 gives the first part of the result. The second part
follows from Proposition 3.6, Theorem 3.5 (using Remark 3.7, Theorem 2.13 and
Proposition 1.13. O

Corollary 6.5. Let X, Y be complex analytic manifolds of dimension dx and dy .
Then,

RINX xY; IB(Q()?;(;T’S))[CZX]) ~ RL (R[.(X;IB(Q%)), RT'(Y;IB(£25))).
Proof. This follows directly from the general isomorphism
RI(X x Y;RL(qx'F, ¢y9)) ~ RL (RI(X; F),RI(Y;G))

which holds for any objects F and G of Shv(X; Znd(Ban)) and Shv(Y;Znd(Ban)).
0

Lemma 6.6. Let X be a complex analytic manifold of dimension dx and let Y be
a complex analytic submanifold of X of dimension dy. Then,

LH*(RTy (IB(Ox))) ~ 0
for k 7£ dX — dy.
Proof. Since the problem is local, it is sufficient to show that
LH*RT(01xv (U x V;1B(Opxy))) ~ 0
for k # dx — dy if U and V are Stein open neighborhoods of 0 in Cx~% and C% .
In this situation, {0} is a holomorphically convex compact subset of U and we get
from Corollary 6.4 that

RF{O}X‘/(U X V; IB(Ova)[dX — dy]) ~ IB(Lb(OU({O}), Ov(V)))

The conclusion follows directly. O
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Theorem 6.7. For any morphism of complex analytic manifolds f : X — Y, we
have a canonical isomorphism

RL (f~'IB(Oy),IB(Ox)) ~ 67 R A, IB(QL5) [dy]

where Ay is the graph of f in X xY and 6y : X — X x Y is the associated graph
embedding. In particular,
LH*(RL(f'IB(0y),IB(Ox))) =0
for k # 0 and
RHom (f~'1B(Oy),1B(Ox)) ~ DY_,, .

Proof. Using Theorem 6.3, we see that
IBQY5)[dy] ~ RL (g7 IB(Oy), ¢ IB(Ox)).
Applying 6}, we get successively

O 1B dy] = 63RL (g TB(Oy). d IB(Ox))
~ RL (67" ¢y IB(Oy), 8¢ IB(Ox))
~RL ((gv 65) " TB(Oy), (gx 0 87)' TB(Ox))
~ RL(f 1 IB(Oy),IB(Ox)).

This gives the first part of the result. To get the second one, it is sufficient to use
Lemma 6.6, if we remember that, following [14], we have

DY_,, ~ 8 RhA, QU [dy].

X—Y —

O

Corollary 6.8. For any complex analytic manifold X of dimension dx, we have a
canonical isomorphism

RL(IB(Ox),IB(Ox)) ~ § ' RIA IB(QYM))[dx]

where A is the diagonal of X x X and ¢ : X — X x X is the diagonal embedding.
In particular,

LH*(RL (IB(Ox),1IB(Ox))) = 0
for k # 0 and

RHom (IB(Ox),IB(Ox)) ~ DY.

Remark 6.9. Note that the fact that continuous endomorphisms of Ox may be
identified with partial differential operators of infinite order was conjectured by
Sato and proved in [3]. The vanishing of the topological £xt* (k > 0) is, to our
knowledge, entirely new.
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7 Reconstruction theorem

Let R be a ring on X with values in Znd(Ban) (i.e. a ring of the closed cate-
gory Shv(X;Znd(Ban)) (see [16])). Denote by Mod(R) the quasi-abelian category
formed by R-modules.

If M, N are two R-modules, one sees easily that £(M,N) is endowed with
both a structure of right R-module and a compatible structure of left R-module.
These structures give two maps

LMN) S L(R, LM, N)).
As usual, we denote their equalizer by £, (M, N). In this way, we get a functor
L) Mod(R)® x Mod(R) — Shv(X;Ind(Ban))

which is clearly continuous on each variable and in particular left exact. Using the
techniques of [16], one sees easily that Mod(R) has enough injective objects and
working as in [16, Proposition 2.3.10], one sees that the functor £,(-,-) has a right
derived functor

RL, (-, ) : D™ (Mod(R))® x DT (Mod(R)) — D*(Shv(X;Znd(Ban))).
Now, let £ be a sheaf on X with values in Znd(Ban) and let N be an R-module.
Since L (€, /N) is canonically endowed with a structure of R-module, we get a functor
L(-,-): Shv(X;Ind(Ban))°® x Mod(R) — Mod(R).

One checks directly that this functor may be derived on the right by resolving the
first argument by a complex of K~ (Shv(X;Znd(Ban))) with components of the type

el
(where P; is a projective object of Znd(Ban) and U; is an open subset of X) and

the second argument by a complex of K+ (Mod(R)) with flabby components. This
gives us a derived functor

RL(-,+) : D™ (Shv(X;Znd(Ban)))® x DY (Mod(R)) — D*(Mod(R))

which reduces to the usual RL functor if we forget the R-module structures.

Finally, recall that an object M of D°(Mod(R)) is perfect if there are integers
p < ¢ such that for any z € X there is a neighborhood U of x with the property
that M|y is isomorphic to a complex of the type

0= Rl =+ = RJ =0
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where the first component is in degree p and the last in degree q. We denote
by Db ¢(Mod(R)) the triangulated subcategory of D*(Mod(R)) formed by perfect
objects.

Proposition 7.1. Let N be a sheaf on X with values in Znd(Ban) such that
LH*RLN,N) =0  (k#0)

and let R be the ring L (N, N) of internal endomorphisms of N'. Then, N is an
R-module and the functor

RL (-, N) : Dby (Mod(R)) — D"(Shv(X;Ind(Ban)))
is well-defined. Moreover, we have a canonical isomorphism
RL(RL (M, N),N) =~ M

in D(Mod(R)) for any M € D’.(Mod(R)). In particular, RC (-, ) identifies
Db (Mod(R)) with a full triangulated subcategory of D*(Shv(X; Ind(Ban))).

Proof. For any M € D) (Mod(R)), it is clear that
RL (M, N) € D'(Shv(X;Ind(Ban)))
since RL (R, N) =~ N. The canonical morphism
MG RLL(M,N) — N
induces by adjunction a morphism
M — RLRL (M, N), N).
If M~R, RLLH(M,N) =~ N and
RLRBRLL(M,N),N)=RLN,N)~LN,N)~R

and the preceding morphism is an isomorphism. It follows that it is also an isomor-
phism for M ~ R¥ and, hence, if M is a complex of the type

0—Rv» — ... 5 RM 0.

Since any perfect complex is locally of this form, the conclusion follows easily. [
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Let us consider the two functors

Iy :V — Tnd(Ban)
E— “lim” F
—
FCE
dim F'<4o00
and
Ly : Ind(Ban) — V

“lim” F; — lim E;
€T €T

where V denotes the category of C-vector spaces. They are clearly linked by the
adjunction formula
Hom (Iy(E), F) ~ Hom (E, Ly(F))

and they are both exact. Moreover,
LV 0] [V =id.

For any sheaf F on X with values in V, we denote Iy,(E) the sheaf associated to the
presheaf
U Iy(E(U)).

Similarly, to any sheaf F' on X with values in Znd(Ban), we denote Ly (F) the sheaf
U Ly(F(U))
Working at the level of fibers, one checks easily that
Lyoly=id.
Proposition 7.2. Let N be a sheaf on X with values in Znd(Ban) such that
LH*(RHom (N,N)) =0  (k#0)

and let Ry be the ring Hom (N, N) of endomorphisms of N'. Then, N is an Iy(Ry)-
module and the functor

RL () (Iv(), N) : Db p(Mod(Ry)) — D*(Sho(X; Ind(Ban)))
is well-defined. Moreover, we have a canonical isomorphism
RHom (Rﬁfv(Rv)(fv(M),N),N) ~ M

in D(Mod(Ry)) for any M € D} (Mod(Ry)).
In particular, Rﬁfv(Rv)(fv(~),N) identifies D% ,(Mod(Ry)) with a full triangu-
lated subcategory of D°(Shv(X;Znd(Ban))).
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Proof. Applying Ly to the morphism

Iy(M) — RL (RL}, (g, (Iv(M),N), N)
we get a canonical morphism
M — RHom (RL;j . (Iv(M),N),N)

since Ly o RC ~ RHom. The conclusion follows by working as in the proof of
Proposition 7.1. 0

Theorem 7.3. Assume X is a complex analytic manifold of dimension dx. Then,
the sheaf I1B(Ox) is an Iy,(DY)-module and the functor

RL, (pee) (Iv(-), IB(Ox)) : Dyy(Mod(DF)) — D*(Shv(X; Ind(Ban)))
is well-defined. Moreover, we have a canonical isomorphism
RHom (RL fV(D?)(fv(M), IB(Ox)),IB(Ox)) ~ M

in D(Mod(D%)) for any M € D ;(Mod(DY)).
In particular, Rﬁfv(p?)(fv(), IB(Ox)) identifies D% ;(Mod(D¥)) with a full tri-
angulated subcategory of D*(Shv(X;Znd(Ban))).

Proof. Thanks to Corollary 6.8, this is an easy consequence of Proposition 7.2. [
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